
AWeb-Based Interface for

Managing Smart Offices

Bachelor thesis

June 2013

Student: M. Woudt

Primary supervisor: Dr. A. Lazovik

Secondary supervisor: Prof. Dr. ir. P. Avgeriou

Daily supervisor: I. Georgievski

Abstract

With smart o�ces managing our devices we have no control over

our devices. How do we manage these devices? We present a prototype

of a web based interface for managing smart o�ces. The prototype

succeeded in being an intuitive interface, and can be used as a base

for a more complete interface.

1

Contents

1 Introduction 3

1.1 Structure . 3

2 Smart environments 4

2.1 Smart o�ce . 4

3 Related work 5

3.1 Energy Smart O�ces 5

3.2 GreenerBuildings . 5

4 Design 7

4.1 Target audience . 7

4.2 Requirements . 7

4.2.1 Functional requirements 7

4.2.2 Non-functional requirements 8

4.3 Architecture . 8

5 Implementation 11

5.1 Tools . 11

5.1.1 Scala . 11

5.1.2 Play Framework 11

5.1.3 REST . 12

5.1.4 Publish-Subscribe pattern 13

5.2 Device manager . 14

5.3 Statistics viewer . 14

5.4 Scheduler . 15

6 Usability test 17

6.1 Exercises . 17

6.2 Results . 17

6.2.1 Exercise 1 . 17

6.2.2 Exercise 2 . 17

6.2.3 Exercise 3 . 18

7 Conclusion and Future Work 19

References 20

A Redispush source code 21

A.1 redispush.c . 21

2

1 Introduction

We get �ooded with devices, at home, the o�ce and all other environments.
As much as we like all these devices, they also have their downsides. We
spend many hours per year only on interacting with these devices, while
they are supposed to make our lifes easier. Besides that, with every device
added we use more of one of the most scarce resources on this planet: energy.

Smart environments are designed to address both problems, reducing in-
teraction and energy consumption, by controlling devices. The word 'smart'
in smart environment refers to the ability of a smart environment to adapt to
user preferences. With this it minimizes the time spent on interacting with
devices, and helps you in saving energy. But they are not perfect yet, and
we still need to be able to manage the devices overriding the system.

On the other hand, we also need to manage the smart environment itself.
While plenty of data can be retrieved from sensors, it is likely that �ne-tuning
of input data remains important. For example when scheduling a task, the
system could perhaps not know that there will be a system outage, or perhaps
that there is need for a human being nearby when the task is executed.

With more and more devices in a smart environment, there is a strong
need for an easy and intuitive way to manage these devices. We focus on
building an interface that is speci�cally designed for smart environments at
o�ces, smart o�ces. The system will however be easily adapted to any other
smart environment. We will try to come up with a prototype of a functional
multi platform interface that is intuitive to use. This prototype could serve
as a base for a full-�edged interface to any smart environment.

1.1 Structure

This thesis is de�ned in seven chapters. After this introduction, chapter 2
gives a short introduction to Smart Environments and in particular Smart
O�ces. In chapter 3 we look at two projects that are going on in the same
context. We take a look at the target audience, requirements and architecture
in chapter 4. In chapter 5 we discuss the implementation phase. We start
o� with looking at the tools that have been chosen, and continue with the
three main components of the system. Chapter 6 contains the exercises for
the usability test, and a discussion on the results of this test. Finally we
come to a conclusion in chapter 7, whereas we also provide some insight in
what could improve the system in the future.

3

2 Smart environments

A smart environment is able to acquire and apply knowledge about an en-
vironment and also to adapt to its users to improve their experience in that
environment[6]. A smart environment receives information about the user
through sensors, and reacts with actuators. An example could be a dark
room. When sensors detect a user walking into the room, the smart envi-
ronment turns on the light. When all users have left the room, the smart
environment turns o� the light. Here the smart environment helps in the
repetitive tasks, and also could help in saving energy in case one would for-
get to turn o� the light otherwise. Smart environments refer to many places,
for example, homes, o�ces, roads and public transportation, but we focus
on smart o�ces here.

2.1 Smart o�ce

A smart o�ce is a smart environment specially designed for use in o�ces.
The concept of smart o�ces is similar to any other smart environment, but
with di�erent constraints. A few important aspects of a smart o�ce are[6]:

• Many di�erent users use the same set of resources

• Only used actively within business hours

• Users are hardly concerned with energy usage

• It should increase productivity

• Can be an extraordinary large number of devices

These aspects have to be taken into account when developing any system
related to smart o�ces. When designing an interface we do not really mind
about the �rst two points, but it should have a bene�t in the latter three
points. Especially the last point is something that needs to be thought of
before starting to build an interface to ensure that the stability of the system
is guaranteed.

4

3 Related work

At the time of writing, there is no other web based interface for managing
smart o�ces publically available. There are two projects that are related to
smart o�ces, but they are mainly focused on making the o�ce and other
buildings more energy e�cient. Both projects could pro�t from an easy-to-
use web based interface for managing a smart o�ce.

3.1 Energy Smart O�ces

The ambitious goal of the EnSO project is to couple, for the �rst time, ad-
vanced research and novel techniques in ambient network technology, prob-
abilistic activity and arti�cial intelligence planning with innovative service-
oriented approaches, thus developing a truly energy-aware platform for the
o�ces of tomorrow[10].

While a lot of energy can be saved by choosing the correct materials and
structure for a building, it is not the only way to save energy. With many
devices around us, at home and o�ce, a lot of energy can be saved when
handling the needs of the user more e�ciently. The EnSO project focuses on
the huge research gap between the systematic way of controlling devices (e.g.,
a light that turns automatically o� after a certain time of no movements),
and controlling the behaviour.

3.2 GreenerBuildings

GreenerBuildings aims to realise an integrated solution that addresses the
challenge of energy-aware adaptation from basic (energy harvesting) sensors
and actuators, up to an embedded software for coordinating thousands of
smart objects with the goals of energy saving and user support[5].

The GreenerBuildings project is based on ubiquitous computing, meaning
that computers are everywhere and anywhere. Assuming there are many
sensors available, the system will detect humans and their needs and react
accordingly. All devices that are not used by these people can be disabled
and in the end save energy and money.

The architecture of the GreenerBuildings project can be seen in Figure
1. It is important to see that even with these many sensors available, the
system is designed to allow the user to control the system.

5

Figure 1: GreenerBuildings architecture

6

4 Design

When designing this interface, we try to design it from a user-centered per-
spective. With every step we try to imagine where a user would expect a
certain functionality. Also we de�ne how the currently existing architecture
integrates with the new interface.

4.1 Target audience

The system is designed to be used by the o�ce energy manager or person
assigned with the energy managing task. This manager has a good under-
standing of the devices that are used in the o�ce, so he can make decisions
on when to disable devices for saving energy.

While it is only used by a limited number of people, it should be designed
with a user centric approach. Most used functions should be quickly available
and logically arranged. This supports the productivity in the o�ce and
increases the likeliness for the system to be used regularly. Also, in case the
o�ce energy manager is not available, any user should be able to perform
the required tasks.

4.2 Requirements

The minimal set of requirements is given in the following subsections. It
should be noted that additions are possible, but not strictly required, and
therefore are not listed.

4.2.1 Functional requirements

1. Device overview

• There should be an overview of the devices connected. The re-
quired information per device is:

� name

� location

� current energy usage

� maximum energy usage

2. Switch devices on/o�

7

3. Live update of device power usage

4. Display device statistics

• Display statistics per device per day

• Display statistics per device per week

• Display statistics per device per year

5. View schedule

6. Create new schedule item

7. Modify schedule item

8. Delete schedule item

4.2.2 Non-functional requirements

• User friendly

• Multi platform

• Scalable

• Reliable

• RESTful

4.3 Architecture

As given in the non-functional requirements above, the system should be
multi platform. Two approaches can be used here, either writing software
that compiles for every platform, including some platform speci�c code, or use
a system that is available on almost any system, an HTML website. With
the �rst being expensive in both development and maintenance costs, we
have chosen the second approach. Today almost every device has an HTML
compatible web browser, and it is likely that any system in the future has
a web browser that is compatible with the current HTML standard. Also
the maintenance costs are signi�cantly lower than other approaches, because
there is no platform speci�c knowledge required.

8

A web interface typically consists of two parts: a web server and a web
client. The �rst runs at a server, providing the �les and data over a connec-
tion, which is usually HTTP or the secured version HTTPS. The latter is
the part that runs on the device of the client, inside the web browser. This is
what represents the data, and provides access to the functionality. The web
client will connect to only the web server, where the web server will connect
to the existing system[7]. This system is connected with the sensors and
actuators in a Smart O�ce. It takes care of signalling the actuators based
on these sensors, or on a prede�ned schedule. In �gure 2 this existing system
is shown as is, where in �gure 3 the web server and clients are added, and
thus shows the architecture of the systems combined.

Figure 2: Current system architecture design

9

Figure 3: New architecture

10

5 Implementation

A good implementation starts by choosing the correct tools, therefore these
important decisions are discussed �rst. After that, the three most impor-
tant elements of the system, the device manager, statistics viewer and the
scheduler, will be discussed in depth.

5.1 Tools

5.1.1 Scala

The Scala programming language[3] has proven itself for being highly reliable
and scalable. Large companies, including Twitter, Linkedin and Intel, use it
for their large mission critical systems[9]. For a smart o�ce, highly reliability
is utmost important. Any defect, even the smallest ones, can have a major
impact on the continuous work�ow of the o�ce. With decreased productivity
it will also have a �nancial impact.

A small o�ce will only have a handful computers, phones, printers, lights
and other appliances, whereas a large corporation can have up to millions of
appliances. This requires a system that can scale up to almost in�nity. The
Scala programming language is speci�cally designed to be scaled for these
systems.

5.1.2 Play Framework

Scala is a general programming language, not speci�cally designed for web
applications. The Play Framework[1] is a framework that provides an easy
to use architecture for building web applications with Scala. As with Scala,
the Play Framework has proven its maturity as it has been accepted by large
companies, most notably LinkedIn[4].This framework has a few advantages
over other frameworks, including:

• stateless

• lightweight

• asynchronous Input/Output

• written in Scala

11

The web interface can make good use of the advantages above, and has a
stable base when using the Play Framework.

5.1.3 REST

The world wide web is an example of a RESTful system. RESTful is said
to be an architecture that is compliant with the constraints de�ned in the
REST style. Representational state transfer[8] (REST) is an architectural
style for distributed systems. One of the main goals of REST was ensuring
scalability, achieved by being stateless and cacheable.

A RESTful system should have the following constraints:

1. Client-server

• Client-server architecture is based on the separation of concerns
principle. This improves portability of the client side, and scala-
bility of the server side.

2. Stateless

• Each request from the client to the server should contain all the
information needed to process the request. It makes the system
more reliable because any system can be replaced without loss of
state. Also scalability is improved, because each request can be
served to any server available.

3. Cacheable

• Each request must be labeled implicitly or explicitly as being
cacheable or not. E�ciency is greatly improved for static con-
tent, however, it has to be used with care to avoid cache data that
is di�erent from the server.

4. Uniform interface

• By providing an uniform interface portability is improved, because
same connectors can be used on di�erent interfaces. It also allows
independent evolvability.

5. Layered system

12

• Di�erent layers can exists in a RESTful system, where the client
can only see the �rst layer. With the uniform interface it is easier
to implement a new layer. A layer can greatly improve perfor-
mance, reliability and scalability by using a load balancer.

6. Code-on-demand (optional)

• This is an optional constraint that does not necessarily has to be
supported, but it is allowed. This allows to extend the function-
ality with scripts that are downloaded and executed at the client.
It improves the extensibility of the system, but it does restrict in
portability.

5.1.4 Publish-Subscribe pattern

In a traditional web application new data will be fetched every few seconds to
keep it up to date. This works perfectly �ne for small scaled applications, but
would create major problems when many applications try to fetch new data
every few seconds. The solution to this problem is the Publish-Subscribe
pattern, where instead of requesting new data every few seconds, new data
will be pushed to all subscribers when it is available. This produces less
overhead and ensures data is pushed to all subscribers as fast as possible,
without having to wait for the next fetch cycle.

We can easily compare this to a real life example. Assume you are a news
reporter writing for several newspapers. In the traditional scenario someone
from the newspaper company would drop by your desk or call you every hour
to check if you have a new article. When writing for only one newspaper it
would be doable, when writing for many newspapers it is not. With the
Publish-Subscribe pattern, you will post your article to a distributor once
you �nish it, and he distributes it to all newspapers that are interested in
articles that you wrote.

A redis[2] server has been used to implement this behavior, although the
collector did not support the push actions yet. To overcome that problem,
we have written a redispush application. This application fetches data ev-
ery few seconds from the source, and pushes it to the redis server. The
implementation of this program can be found in Appendix A.

13

5.2 Device manager

The device manager shows the devices where the user can interact with. It
shows the current status of all devices, which includes their MAC id, name,
location, state(on, idle, o�), current energy usage and the maximum energy
usage.The list of devices can be ordered by any of these columns to provide
a better overview of the current status. From this list a user can also switch
states, switch it o� when a device is on or idle, or the other way around. At
last the user can directly jump to the statistics view.

The current energy usage is updated as soon as new information about
energy usage is provided by the redis server. The redis server pushes the
energy usage to the web server, which is subscribed on that channel. The
web server and clients implement their own Publish-Subscribe algorithm.
The clients subscribe and listen to the web server with the use of HTML5
WebSockets, which is the only valid way to allow two-way communication
between the web server and client.

The current interface is shown in �gure 3. For this design a minimalistic
approach has been used, and shows in a visual manner only the relevant data.

Figure 3: Device overview interface

5.3 Statistics viewer

The statistics viewer shows, as the name suggests, statistics about each de-
vice. For each device we can get statistics per day, week or year. The
statistics are then nicely displayed with the use of jQuery �ot, which can be
seen in �gure 4. While this gives a decent overview of the power usage, it
would have been more useful if there was information about actual costs. The
system would have to be connected with a smart grid to provide information
about energy prices.

14

Figure 4: Statistics viewer interface

5.4 Scheduler

The scheduler provides a visual interface to the complete schedule. When
the smart o�ce scheduled a certain task, it might not always be scheduled
correctly, based on certain context where the system does not know about. In
that case it is useful to be able to modify the schedule and �x it accordingly.

Figure 5 shows the interface of the schedule, but also the window that
appears when adding a new schedule item. This window is brought up by
clicking anywhere on the time scale of a certain device. In case of error,
the date and time can be changed. Any change made in this system will
directly be visible in the schedule that is still visible in the background, but
the schedule item will only be added when the con�rm button is pressed
afterwards.

15

Figure 5: Scheduler interface

16

6 Usability test

To measure the e�ect of the user interface, a usability test has been con-
ducted. The tests consisted of three simple tasks, where for each task the
time taken, number of steps, and the number of wrong paths taken are noted.
There were a total of 14 participants. 7 participants have been given a short
introduction, whereas the other 7 have never seen the system before.

6.1 Exercises

1. Switch device with name 'Test Device' o�

2. View the daily statistics for device 'Test Device' on June 20th 2013.

3. Schedule device 'Test Device' to switch on tomorrow at 9 PM.

6.2 Results

6.2.1 Exercise 1

The results of the �rst exercise can be seen in table 1. With the exception
of person 8, both groups scored more or less equally. The time and errors
columns clearly show that this exercise is easy to accomplish for anyone.

Person With introduction Person Without introduction
Time Steps Errors Time Steps Errors

1 0:04 2 0 8 0:35 6 2
2 0:08 2 0 9 0:06 2 0
3 0:07 2 0 10 0:06 2 0
4 0:04 2 0 11 0:07 2 0
5 0:12 4 1 12 0:09 2 0
6 0:04 2 0 13 0:05 2 0
7 0:07 2 0 14 0:05 2 0

Average 0:07 2 0 Average 0:10 3 0

Table 1: Result of �rst exercise of usability test

6.2.2 Exercise 2

1. The results of the second exercise can be seen in table 2. While this test
took a bit longer for the participants, the results are not signi�cantly

17

di�erent between both groups.

Person With introduction Person Without introduction
Time Steps Errors Time Steps Errors

1 0:11 6 0 8 0:42 12 2
2 0:17 9 0 9 0:15 8 0
3 0:18 10 1 10 0:19 9 1
4 0:14 7 0 11 0:21 8 0
5 0:16 6 0 12 0:12 8 0
6 0:15 8 0 13 0:09 6 0
7 0:11 8 0 14 0:16 7 0

Average 0:15 8 0 Average 0:19 8 0

Table 2: Result of second exercise of usability test

6.2.3 Exercise 3

1. The results of the last exercise can be seen in table 3. While the time to
complete the task is almost equal in both groups, we do see an increase
in steps and errors for the participants without introduction. While
surveying, it is noticeable that the participants in the second group
were looking for any guidelines, but with trial-and-error still �gured it
out pretty quickly.

Person With introduction Person Without introduction
Time Steps Errors Time Steps Errors

1 0:05 6 0 8 0:22 16 5
2 0:06 8 1 9 0:08 8 1
3 0:08 8 1 10 0:06 9 2
4 0:07 6 0 11 0:07 9 2
5 0:07 5 0 12 0:06 8 1
6 0:08 6 0 13 0:05 5 0
7 0:07 5 0 14 0:06 6 0

Average 0:07 6 0 Average 0:09 9 2

Table 3: Result of third exercise of usability test

18

7 Conclusion and Future Work

The current prototype succeeded in creating a functional, user friendly, multi
platform interface. However, it should be noted that the system is fairly
limited in its current being. The controller where this interface is connected
to does not provide more functionality. Therefore, if this interface is to be
extended, it can only do so when the controller is extended �rst.

Extra functionality that would be very useful to have includes:

• Modify schedule items

• Delete schedule items

• Reccuring schedule items

• Current energy prices

• Energy price forecast

• Combining several actions into tasks

The usability test described in chapter 6 shows that the prototype is intuitive,
to both users that have never worked with the system before, and users that
already have had an short introduction to the system. In short we can
conclude the system is easy to use, and could perhaps only pro�t from small
explanation on the scheduler page.

19

References

[1] Play framework - build modern & scalable web apps with java and scala.
June 2013. URL http://www.playframework.com/.

[2] Redis. June 2013. URL http://redis.io.

[3] The scala programming language. June 2013. URL http://www.

scala-lang.org/.

[4] Yevgeniy Brikman. The play framework at linkedin. June
2013. URL http://engineering.linkedin.com/play/

play-framework-linkedin.

[5] GreenerBuildings consortium. Approach. June 2013. URL http://

greenerbuildings.eu/approach.

[6] Diane Cook and Sajal Das. Smart Environments: Technology, Protocols
and Applications (Wiley Series on Parallel and Distributed Computing).
Wiley-Interscience, 2004. ISBN 0471544485.

[7] Georgievski et al. Optimizing o�ces for the smart grid. November 2011.

[8] R. Fielding. Architectural styles and the design of network-based soft-
ware architectures. 2000. URL http://www.ics.uci.edu/~fielding/

pubs/dissertation/top.htm.

[9] Martin Odersky. What is scala? June 2013. URL http://www.

scala-lang.org/what-is-scala.html.

[10] Energy Smart O�ces Project. Approach. June 2013. URL http://

www.ensoffices.nl/index.php/approach.

20

http://www.playframework.com/
http://redis.io
http://www.scala-lang.org/
http://www.scala-lang.org/
http://engineering.linkedin.com/play/play-framework-linkedin
http://engineering.linkedin.com/play/play-framework-linkedin
http://greenerbuildings.eu/approach
http://greenerbuildings.eu/approach
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.scala-lang.org/what-is-scala.html
http://www.scala-lang.org/what-is-scala.html
http://www.ensoffices.nl/index.php/approach
http://www.ensoffices.nl/index.php/approach

A Redispush source code

Redispush is an application used for simulating a smart o�ce where live data
is pushed to a redis server. This data is fetched using the REST service, and
pushes it the redis server. It depends on the freely available hiredis library.

A.1 redispush.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <cu r l / cu r l . h>

#inc lude " h i r e d i s . h"

void download_prof i le (void) ;

s t r u c t MemoryStruct {
char ∗memory ;
s i ze_t s i z e ;

} ;

s t a t i c s t r u c t MemoryStruct chunk ;

i n t main (void) {
unsigned i n t j ;
r ed i sContext ∗c ;
r ed i sRep ly ∗ r ep ly ;

/∗ 1 .5 s ec timeout ∗/
s t r u c t t imeva l t imeout = { 1 , 500000 } ;
c = redisConnectWithTimeout ((char ∗) " 1 2 7 . 0 . 0 . 1 " , 6379 , t imeout) ;
i f (c == NULL | | c−>er r) {

i f (c) {
f p r i n t f (s tde r r , "Connection e r r o r : %s \n" , c−>e r r s t r) ;
r ed i sF r e e (c) ;

} e l s e {
f p r i n t f (s tde r r , "Connection e r r o r : can ' t a l l o c a t e r e d i s context \n ") ;

21

}
e x i t (1) ;

}

whi l e (1) {
chunk .memory = mal loc (1) ;
chunk . s i z e = 0 ;
chunk .memory [0] = 0 ;

download_prof i le () ;

i f (chunk .memory) {
i f (chunk . s i z e > 0) {

r ep ly = redisCommand (c , "PUBLISH dev icedata %s " , chunk .memory) ;
f r eeRep lyObject (r ep ly) ;

}
f r e e (chunk .memory) ;

}

s l e e p (3) ;
}

re turn 0 ;
}

s t a t i c s i ze_t WriteMemoryCallback (void ∗ contents , s i z e_t s i z e , s i z e_t nmemb, void ∗userp) {
s i ze_t r e a l s i z e = s i z e ∗ nmemb;
s t r u c t MemoryStruct ∗mem = (s t r u c t MemoryStruct ∗) userp ;

mem−>memory = r e a l l o c (mem−>memory , mem−>s i z e + r e a l s i z e + 1) ;
i f (mem−>memory == NULL) {

f p r i n t f (s tde r r , "Out o f mem!\ n ") ;
r e turn 0 ;

}

memcpy(&(mem−>memory [mem−>s i z e]) , contents , r e a l s i z e) ;
mem−>s i z e += r e a l s i z e ;

22

mem−>memory [mem−>s i z e] = 0 ;

re turn r e a l s i z e ;
}

void download_prof i le (void)
{

CURL ∗ curl_handle ;
CURLcode r e s ;

cu r l_g loba l_ in i t (CURL_GLOBAL_ALL) ;
curl_handle = cur l_easy_in i t () ;
i f (curl_handle) {

curl_easy_setopt (curl_handle , CURLOPT_URL, "http : / /129 . 1 25 . 5 1 . 6 2 : 9 090/ c o n t r o l l e r / s e r v i c e s / dev i c e s / w i n i t i a l s t a t e s ") ;
cur l_easy_setopt (curl_handle , CURLOPT_WRITEFUNCTION, WriteMemoryCallback) ;
cur l_easy_setopt (curl_handle , CURLOPT_WRITEDATA, (void ∗)&chunk) ;
// curl_easy_setopt (curl_handle , CURLOPT_USERAGENT, " l i b c u r l−agent / 1 . 0 ") ;

r e s = curl_easy_perform (curl_handle) ;
i f (r e s != CURLE_OK)

f p r i n t f (s tde r r , "Curl f a i l e d : %s \n" , cur l_easy_st re r ro r (r e s)) ;

curl_easy_cleanup (curl_handle) ;
}
cur l_global_cleanup () ;

}

23

	Introduction
	Structure

	Smart environments
	Smart office

	Related work
	Energy Smart Offices
	GreenerBuildings

	Design
	Target audience
	Requirements
	Functional requirements
	Non-functional requirements

	Architecture

	Implementation
	Tools
	Scala
	Play Framework
	REST
	Publish-Subscribe pattern

	Device manager
	Statistics viewer
	Scheduler

	Usability test
	Exercises
	Results
	Exercise 1
	Exercise 2
	Exercise 3

	Conclusion and Future Work
	References
	Redispush source code
	redispush.c

