
jorrit de boer

S M A RT O F F I C E S : A W E B - B A S E D I N T E R FA C E F O R
TA S K S E L E C T I O N

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

S M A RT O F F I C E S : A W E B - B A S E D I N T E R FA C E F O R TA S K
S E L E C T I O N

jorrit de boer

In Partial Fulfilment of the Requirements for the Degree of Bachelor in Computing
Science

July 2013 – version 1.0

[July 14, 2013 at 13:41 – classicthesis version 1.0]

supervisors:
Daily supervisor: Ir. I. Georgievski
First supervisor: Prof. Dr. Ir. Marco Aiello
Second supervisor: Prof. Dr. Ir. Paris Avgeriou

Jorrit de Boer: Smart offices: A web-based interface for task selection, In
Partial Fulfilment of the Requirements for the Degree of Bachelor in
Computing Science , © July 2013

[July 14, 2013 at 13:41 – classicthesis version 1.0]

A B S T R A C T

This thesis presents the approach taken to develop a web application
for a smart office. The proposed interface attempts to make the role
of the smart office user more active by creating a user interface which
is user-friendly: unintrusive and easy to use. The interface proposes
to enable selecting complex tasks by enabling easy and natural inter-
action.

Several extensions are proposed for further research such as using
representative images for tasks, sustaining the hierarchy of the en-
vironment, using images for environmental objects, connecting the
interface to physical devices and adding voice input features.

v

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

C O N T E N T S

1 introduction 1

1.1 Thesis structure 2

2 smart environments 3

2.1 Smart Offices 3

2.2 Related Projects 4

2.2.1 Interface Design 4

2.2.2 Smart Office Applications 6

3 concepts and design 9

3.1 An overview 9

3.2 Planning 10

3.2.1 HTN Planning 10

3.2.2 Domain 12

3.2.3 Problem 12

3.3 Repository 13

3.4 Environment State Change Notifier 13

3.5 Requirements 14

3.5.1 Functional Requirements 14

3.5.2 Non-functional Requirements 14

3.6 Interface Design 15

3.7 Application Dependencies 20

4 implementation 21

4.1 Framework 21

4.2 Web Design Languages 21

4.3 WAMI toolkit 22

4.4 Planner 23

4.4.1 Domain 24

4.4.2 Problem 25

4.5 Repository 26

4.6 Environment State Change Notifier 27

4.7 Application Architecture 27

5 conclusions and future work 29

5.1 Future Work 30

bibliography 33

i appendix 37

a example domain files in hpdl 39

vii

[July 14, 2013 at 13:41 – classicthesis version 1.0]

viii contents

a.1 Domain Heading 39

a.2 Domain Action 40

a.3 Domain Task & Method 41

b example problem files in hpdl 43

b.1 Problem Heading 43

b.2 Problem Task 44

c example repository file 45

d installation guide 47

d.1 Installation Instructions 47

d.1.1 Clarification 47

[July 14, 2013 at 13:41 – classicthesis version 1.0]

L I S T O F F I G U R E S

Figure 1 Screenshot of the MASP user interface [20] 5

Figure 2 Example of a mobile phone user interface [15] 6

Figure 3 An overview of the existing components 10

Figure 4 A very simple black box representation of the
planner 11

Figure 5 The start screen of the interface. 15

Figure 6 An extraction from the register screen of the
interface. 16

Figure 7 The home screen of the interface. 16

Figure 8 The tasks screen of the interface. 17

Figure 9 The specify task screen of the interface. 18

Figure 10 The specify values screen of the interface. 18

Figure 11 The selected tasks menu which is displayed on
the right of the screen. 19

Figure 12 An extraction of the environments page: all the
available lights. 19

Figure 13 The profile screen of the interface. 19

Figure 14 The UserData class and two related classes. 28

Figure 15 The UserData class and the two other related
classes. 28

L I S T O F TA B L E S

L I S T I N G S

Listing 1 An example domain file in HPDL. 39

Listing 2 An example domain file illustrating an action. 40

ix

[July 14, 2013 at 13:41 – classicthesis version 1.0]

Listing 3 An example domain file illustrating a task and
two methods. 41

Listing 4 An example problem file in HPDL. 43

Listing 5 An example problem file illustrating task spec-
ification 44

Listing 6 An example extraction from a repository file in
JSON. 45

A C R O N Y M S

MVC Model-View-Controller

PDDL Planning Domain Definition Language

HPDL Hierarchical Planning Domain Language

JSON JavaScript Object Notation

HTML HyperText Markup Language

CSS Cascading Style Sheet

SHP Scalable Hierarchical Planner

REST REpresentational State Transfer

x

[July 14, 2013 at 13:41 – classicthesis version 1.0]

1
I N T R O D U C T I O N

In a high-tech world where technology is integrated into our society,
information gets processed automatically without the collusion of the
user. Technologies have evolved rapidly and the user is confronted
with becoming familiar with the technologies used. Because offices
are used for multiple purposes (e. g., conducting research, holding
meetings) and electronic devices are the rule rather than the excep-
tion, it is worth investigating to what extent office work can be au-
tomized.

A smart and energy-efficient office makes decisions based on the
environment and other knowledge it possesses. The decisions au-
tonomously being made by the smart office for the sake of the of-
fice occupant do not always lead to desired behaviour, since the user
might think the decisions being made by the smart office do not sup-
port and even disturb the working process.

At the moment the smart office user does not have enough influ-
ence on in what way the smart office should respond [2]. A solution
to giving the user the opportunity to specify what should happen in
the office is to let the user define tasks which represent what the user
can accomplish in the office. Users should be able to choose a com-
bination of simple and more complex tasks (compound tasks). The
last category consists of a sequence of simple and/or complex tasks.
The selection of tasks can be enabled by creating a web-based inter-
face which should be intuitive and thus easy to use for non-experts.
Enabling user input to the smart office in a very intuitive way makes
sure the application as a whole is appealing to a broad public. Since
the interface is intended to be implemented using a web application,
the interface will work regardless of the operating system used and
the hardware present. Furthermore, the end user is most likely fa-
miliar with using a computer and browser which is advantageous
compared to difficult to handle devices and software.

Interface design on its own is an interesting topic to study, since
there is a lot of freedom in designing an interface and the quality of
the interface will stand or fall with the user’s judgement. One of the
challenges the development of a graphical interface is facing is build-
ing the interface in such a way that it has enough functionalities and

1

[July 14, 2013 at 13:41 – classicthesis version 1.0]

2 introduction

is user-friendly at the same time. Adding too many functionalities
will lead to an application which is too complex. As a result, the user
feels overwhelmed by information. On the other hand, providing not
all the desired functionalities will not satisfy the user either.

The aim of this thesis is to develop a web-based application which
assists the user in selecting tasks, but which also has other relevant
functionalities. Examples of relevant functionalities are displaying the
current state of the environment and showing the user’s preferences.
This thesis investigates the possibility of developing a web applica-
tion for smart offices which has the following objectives:

• Make the role of the smart office user more active: the smart of-
fice autonomously makes decisions which do not always satisfy
the user’s needs

• Create a user-friendly interface which is unintrusive and easy
to use

• Provide the ability to select complex tasks and to show the en-
vironmental state

• Enable easy and natural interaction such as speech-based inter-
action

1.1 thesis structure

The methodology used is described as well as a justification of the
decisions made during the project. At first some theory should be
described in order to understand the context of the problem. Chap-
ter 2 describes smart environments in general, defines a smart office
and describes related projects. The design of the user interface as well
as important concepts are described in Chapter 3. The concepts also
involve a description of existing systems to integrate with. This chap-
ter contains a specification of the requirements and architecture to be
used as well. The technical details are elaborated upon in Chapter
4, in which all the technologies used are described. In Chapter 5 the
conclusions of this thesis are stated and some suggestions for future
work are introduced.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

2
S M A RT E N V I R O N M E N T S

In a smart environment smart devices are cooperating for the sake of
the office occupants. Smart refers to the ability to autonomously ac-
quire and apply knowledge, while environment is the notion of our
surroundings [3]. There are many kinds of smart environments, ex-
amples include, but are not limited to, smart homes and smart rooms.
In the rest of this Chapter smart offices are discussed first followed
by a description of related projects.

2.1 smart offices

A smart and energy-efficient office makes decisions based on the envi-
ronment and other knowledge it possesses. An example of this knowl-
edge is which (electrical) appliances are available in the office and
which actions are permissible. The main goal of a smart office is to
support the office users in an unintrusive manner. There are many
types of support such as automizing daily office tasks, ensuring the
user’s safety and maximizing daily profit. The user needs to decide
whether it finds the actions performed by the smart office supportive
or not.

According to Cook et al. a smart office is not just another smart
environment: it is a very specific type of smart environment which
distinguishes itself from other types of smart environments on several
characteristics:

• "Office work is usually highly automizable and computer-related"

• Offices can be used for many purposes (e. g., meeting rooms,
discussion rooms etc.)

• Office users have different levels of (computer) skills (e. g., a
simple end-user is satisfied with a simple menu, but a more
advanced user desires a more advanced menu)

• The interaction with smart offices depends on the type of user
(e. g., a user might prefer speech- based interaction)

3

[July 14, 2013 at 13:41 – classicthesis version 1.0]

4 smart environments

2.2 related projects

Although the author is unaware of related projects involving develop-
ment of a web-based interface, existing related projects on the field of
smart environments were already considered. Even though some of
the related projects are based on smart homes, the ideas introduced
in this type of project can be used as inspiration for designing smart
office interfaces as well.

2.2.1 Interface Design

In order to assist office users in doing their everyday tasks it is im-
portant to design a user-friendly user- interface in which the user has
the possibility to control the environment. Several related projects on
the field of interface design for smart environments are described in
the following subsections.

2.2.1.1 MASP

The Multi-Access Service Platform [20] allows "users to evaluate and
control multimodal interaction". This system has as its main goal to
give users a better logical understanding of complex smart environ-
ments. The system also supports multimodal interaction, so not only
the ’usual’ input methods (e. g., keyboard and mouse input) but also
speech input can be used. The interface has a lot of configuration set-
tings which can be adjusted by the user. Therefore, the user is able to
adapt the system to its needs. This advantage overcomes the problem
that users do not have enough influence on the actions performed in a
smart environment. A screenshot of the system is provided in Figure
1. The system can automatically detect changes in the availability of
resources, thus services can be added or removed as time proceeds.
Even though the MASP is not a web-based application, ideas from
it can be used for the development of the smart office interface de-
scribed in this thesis.

2.2.1.2 Empirical Evaluation of Existing User Interfaces

According to Koskela et al. the added value of their research on ex-
isting user interfaces is that several user interfaces are compared by
testing the interfaces in an actual living environment over a long pe-
riod of time. Previous research did not take into account realistic test

[July 14, 2013 at 13:41 – classicthesis version 1.0]

2.2 related projects 5

Figure 1: Screenshot of the MASP user interface [20]

scenarios and often the testers of the interface also belonged to the
interface design team.

Although Koskela et al. distinguish three phases in their paper, in
this thesis only the evaluation phase is discussed, because it is useful
information for designing a smart office interface.

The results of the research put forward the need for two different
types of user interface requirements for tasks. Pattern control enables
the timing of events, e. g., prepare the home (or office) for daily rou-
tines. The other type of requirement for tasks is instant control: im-
pulsive tasks which should be executed immediately. Whenever the
user wants to control a device, the device should be ready to handle
the user’s request. Furthermore, the user should be able to control
frequently used devices by taking only a couple of steps (e. g., by
using shortcuts). It is also important that the user can control the en-
vironment on a single place, e. g., closing the curtains, turning on the
projector and dimming the lights without having to pass through the
home or office.

The smart home research project showed that the test subjects (a
couple) particularly liked the user interface of the mobile phone (dis-
played in Figure 2), especially because it allowed them to control the
environment without having to move to a smart home control device
(e. g., a computer containing smart home control software). Although
this has not been tested, it is higly probable that this problem does

[July 14, 2013 at 13:41 – classicthesis version 1.0]

6 smart environments

Figure 2: Example of a mobile phone user interface [15]

not appear in smart offices, because a smart office is relatively small
compared to a smart home, so it is relatively easy for the user to
move to a smart office control device (e. g., the web-based application
installed on a desktop computer).

An important lesson drawn from Koskela et al.’s paper is that
user’s expectations are not always met and that unforeseen problems
arise. In summary, the empirical evaluation of existing user interfaces
brings to light several interesting conclusions which can be used as
inspiration for designing a smart office interface.

2.2.2 Smart Office Applications

In the paper of Ramos et al. several existing smart office applications
are described. In this subsection, the most important and relevant
projects described in that paper is elaborated upon.

2.2.2.1 Monica SmartOffice

The Monica SmartOffice [16] intends to "anticipate user intention"
and "communicate useful information" by using "user monitoring".
The project involves placing many microphones and cameras in the
office. The cameras were mainly used for face recognition and user
activity tracking. The microphones serve for capturing user speech
input. The project also involves software modules, each having a spe-
cific task.

2.2.2.2 Intelligent Environment Laboratory of IGD Rostock

Whilst most systems use a function-oriented interaction, this labora-
tory uses a goal-oriented interaction. The intention of the laboratory
is "to create an interactive environment based on multimodal inter-
faces". Each component provides "a description about the meaning

[July 14, 2013 at 13:41 – classicthesis version 1.0]

2.2 related projects 7

and effect of their function". The semantic descriptions are imple-
mented as "a set of preconditions that must be fulfilled" in order to
execute an action. The semanting description of the effects is passed
to "a planning assistant" which calculates the plan needed to fulfill
the goals. The Intelligent Environment Laboratory of IGD Rostock
stands out because goals should be reached instead of actions should
be performed.

2.2.2.3 Smart Doorplate

The Smart Doorplate project "is able to display notes for visitors and
change them remotely". For example, this project can be used by an
office occupant to leave important messages whenever he/she is not
present. Several devices, such as displays, sensors, microphones and
person tracking systems, are present in the office to support the goal
of the Smart Doorplate project: provide the office visitor with useful
information in case of owner absence.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3
C O N C E P T S A N D D E S I G N

It is important to have a good understanding of the concepts neces-
sary to develop a working interface for smart offices. The design of
the interface is a crucially important subject which requires thought-
ful decisions. The application as is needs to be integrated with many
existing components. These components are explained together with
requirements developed taking into account the existing components.
Based on the requirements, an architectural concept is created. The
design decisions are justified using supporting screenshots of the ap-
plication.

3.1 an overview

Figure 3 provides an overview of the role of the smart office interface
with respect to existing components.

As is described in more detail in section 3.2, the planner needs do-
main and problem specifications. The domain component is needed
by the planner in order to provide knowledge about how to solve
a decision-making problem. Basically, the problem specification con-
sists of two parts: initial state information and task specification. The
initial state information is stored in the repository component. This
component sends the information to the planner via the Smart Office
Interface. The repository component represents a database which con-
tains information about available objects. The user of the smart office
interface selects tasks and the task specification is generated by the
interface based on the selected tasks. Whenever the user wants the
selected tasks to be executed the planner is invoked, it gathers the
domain and problem specification and calculates the actions taken as
a result of execution. In case the state of the environment changes,
an update is sent by the Environment State Change Notifier and the
repository gets updated.

Each component of this scheme is explained in more detail in the
following sections.

9

[July 14, 2013 at 13:41 – classicthesis version 1.0]

10 concepts and design

Figure 3: An overview of the existing components

3.2 planning

A smart environment needs to make a lot of decisions which antici-
pate the users needs. Even though an office is often relatively small,
the number of actions possible is still large. There are often many
ways to achieve the same goal and it is not always clear which way
is the best. User-defined goals are often complex and the smart of-
fice needs to find a way to fulfil them. It is important that the user
should not be limited in the selection and execution of goals (e. g.,
not only predefined goals should be possible). Furthermore, the ap-
plication needs to be able to deal with different smart offices which
contain multiple devices which can be arranged differently. In sum-
mary, a smart office autonomously needs to decide which steps to
take for the sake of the office occupant, so a decision-making system
is needed.

3.2.1 HTN Planning

One way to support the decision-making process is to use a system
based on HTN planning. HTN planning is a planning methodology
used in the field of Artificial Intelligence in which the planning sys-
tem repeatedly decomposes subtasks until only primitive tasks (ac-
tions) are left [8]. The key components of a HTN planning system are
tasks, methods and actions [22]. These essential terms are explained
in detail in section 3.2.1.1.

Using HTN-planning has a lot of advantages [12] and a system us-
ing this approach is "particularly well-suited for adaptable and user-
centric environments" [14]. A smart office conforms to these character-
istics, so this type of system is suitable for the application. The system

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3.2 planning 11

is referred to as the planner, because one system component relies on
the use of planning techniques from the AI field. The planner is in fact
the implementation of (HTN) planning and this is elaborated upon in
section 4.4. Figure 4 shows a simplified representation of the planner
by regarding it as a black box. According to Kaldeli et al. the planner
makes sure that the user focuses only on declaring the desired tasks,
thus the user does not have to care about how the tasks are achieved.

Figure 4: A very simple black box representation of the planner

3.2.1.1 Types of Tasks

Smart office users want to select different types of tasks which mainly
differ in complexity. Many tasks require involvement of multiple de-
vices and are decomposed into simple and/or complex tasks. An ac-
tion is defined as a simple task. Actions represent the building blocks definition of an

actionfor tasks. They can be seen as a simple task with an observable ef-
fect. As an example, consider switching a light. This action has an
observable effect since the user can see the light being turned on or
off.

A smart office only providing the ability to select actions is not
sufficient for a smart office user because in that case the smart office
does not have any added value: the user can select and execute ac-
tions easily without involvement of the interface. The added value
of the interface is that it provides a way for users to select and ex-
ecute complex tasks. Therefore, users should be able to select more
complex tasks as well. A complex task is defined by multiple meth- definition of a

complex taskods. A method is conveniently defined as a possible way to achieve
definition of a
method

a (complex) task. A method is built out of simple or complex tasks.
The concepts introduced can be best illustrated using an example.

Suppose the smart office user wants to hold a meeting in his/her of-
fice. The office needs to be changed to a meeting room, so the user se-
lects the task set-meeting-room. Setting the meeting room can be done
in multiple ways since it depends on the current state of the envi-
ronment. For example, one method of the task represents the actions
to be executed in the case the level of (natural) light emission is too
high. A different method could be handling the case in which the
level of light emission is adequate. The last mentioned method dims

[July 14, 2013 at 13:41 – classicthesis version 1.0]

12 concepts and design

the lights and activates the projector. The first mentioned method also
activates the sun shade in order to compensate for the high level of
light emission.

3.2.2 Domain

The planner needs domain knowledge in order to make decisions.
Domain knowledge can be described as knowledge about the current
environment like which objects are present in the office and what are
the allowable actions. Consider the following example for a clarifica-
tion of domain knowledge.

Suppose the user wants to execute the task type-a-document. The
planner first selects the type-a-document task and checks if this task
has a method satisfying the precondition (a condition which needs
to be satisfied in the current environment before decomposing the
method). If there is an applicable method, the method is applied
by decomposing it into one or more tasks. type-a-document is a com-
plex task which has only one method which is decomposed into the
actions turn-on-computer, turn-on-desk-light, log-user-in and start-word-
processor, because the precondition (e. g., the computer is in the user’s
office) is satisfied. The fact that the task type-a- document is subdivided
into the just mentioned actions is an example of domain knowledge.

3.2.3 Problem

Providing the planner only domain knowledge does not make sense,
since the planner needs to know for which problem it needs to make
decisions. Basically the problem consists of two parts: information
about the initial state and a specification of one or more tasks. The
initial state represents the state of the environment just before the
task is selected. Initial state information includes the following infor-
mation:

1. Available locations and their types (e. g., building32 is a build-
ing, room22 is an office)

2. Available objects and their types (e. g., light34 is of type light,
proj05 is of type projector)

3. Current value of the object (e. g., 70%, turned-on/turned-off)

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3.3 repository 13

4. Location of the object (e. g., light34 is in room534, office368 is
on floor02)

The specification of the task(s) is the main focus of this thesis and
should be enabled by using a web-based interface for smart offices.
A task or action has a name and often includes parameters as well.
Parameters can either represent object names or values. An example
of a possible task is dim-light light32 65 which could represent the
users intention to dim light light32 to a light emission percentage of
65.

3.3 repository

A repository generally denotes a central place which stores data of
components. In the context of the smart office interface, the repository
denotes a storage location containing information about objects. The
initial state as mentioned in the problem section (3.2.3) is in fact for
the largest part generated based on information from the repository.
A selection of information present in the repository is:

1. Name of the object (e. g., light_778, comp33)

2. Type of the object (e. g., light, computer)

3. Location of the object (e. g., room54, office21)

4. Most recent value of the object (e. g., 34 Watt, 83%)

3.4 environment state change notifier

Since the state of the environment changes often, the (initial) state
should be updated. The environment state change notifier is respon-
sible for detecting an update, needs to gather information about the
name of the object updated and the new value of the object and in-
forms and updates the repository of every subscriber. Suppose that
the interactive whiteboard is turned off due to a long period of inac-
tivity. The environment state change notifier notifies a change in the
environment, gathers the name of the whiteboard and the new status
(turned-off) and informs and updates the whiteboard object for every
subscriber.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

14 concepts and design

3.5 requirements

The functional and non-functional requirements are concisely listed
below:

3.5.1 Functional Requirements

• The user should be able to register for a new user account

• The user should be able to login with an existing user account

• The tasks should be filtered on the location specified in the user
profile

• The state of the environment should be displayed

• The environmental state should be updated if necessary

• Basic information from the user profile should be viewable

• The user should be able to add/remove tasks

• The user should be able to execute tasks

• The result of task execution should be displayed

• Speech input as well as usual (keyboard/mouse) input should
be supported

3.5.2 Non-functional Requirements

• The interface should be intuitive and easy to use

• There should be a trade-off between functionality and simplicity
of the interface

• The interface must be able to work with multiple devices (e. g.,
desktop computers, laptops, smartphones etc.) having different
operating systems

• The interface should work properly on at least the web browsers
Mozilla Firefox and Google Chrome.

• The user’s attention should "remain focused on the work being
done, rather than on the mechanics of interaction" [13]

• The user should learn and remember a limited number of ac-
tions [13]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3.6 interface design 15

3.6 interface design

Designing an interface is a very challenging task and requires a lot of
hard work. Knowledge of best practices in smart environments and
interface design principles should be combined in order to create a
good interface. To support the justification of design decisions, screen
shots of the interface are used.

Figure 5: The start screen of the interface.

The start screen does not need much explanation since it is very
straightforward. The Cascading Style Sheet (CSS) styling is designed
by Jakhu. Adjustments to the original design have been made, e. g.,
the names of the input fields are shown. The size of the login box is
relatively small. This design decision has been made with regard to
the different screen sizes of different devices. Especially in the case of
smart phones, screens are often quite small and this design compen-
sates for such a screen. In the case the user is not registered yet, the
user clicks the "Register" button and ends up with the register screen.
The register screen is only partly shown in Figure 6.

Notice that not all information from the register screen is shown for
clarity purposes. Besides giving a valid e-mail address and password
(which should be confirmed), the user should also specify the location
of the office he/she is working in. The location information is used
to determine appropriate objects for the user.

The implementation of the design of the interface (Figure 7) is for
the largest part performed by Derby Webdesign [21]. The template
has been adjusted to meet the needs of the smart office interface. The
main screen of the interface contains a welcome message giving a

[July 14, 2013 at 13:41 – classicthesis version 1.0]

16 concepts and design

Figure 6: An extraction from the register screen of the interface.

Figure 7: The home screen of the interface.

summary of the functionalities the interface has to offer. On the right-
hand side, the user becomes aware of the possibility to make use of
voice input. The idea behind this decision is that the user should be
aware of the possibilities as soon as possible even if the user will
not use the functionality. The possible statements are listed as well,
because the user needs to know which voice input it should use to ac-
complish its desired action. The same action is achieved by more than
one sentence which makes sure the application is flexible enough
for multiple users having different mindsets. The upper-left of the
screen shows a microphone icon: the interface of the WAMI-toolkit.
The toolkit is described in section 4.3 in the Implementation chapter.

The main job of the interface is to support task selection, the screen
dealing with this functionality is displayed in Figure 8:

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3.6 interface design 17

Figure 8: The tasks screen of the interface.

The tasks are graphically displayed by using rectangles with the
task names inside. It is difficult to generate useful images based on
the task’s name. Therefore the application generates images with the
help of dummy images [10]. The most ideal scenario would be to
display images representing the tasks, but the current system is not
ready for such a feature.

Figure 9 shows the screen loaded after the user selected a task. The
screen shows the necessary parameters in a well-styled table. The
selected object should be applied before going to the next screen, be-
cause the application needs to calculate the allowed values in the
case an additional value is required (e. g., dimming a light requires
the amount of dimming). Screen 10 is shown in this case.

Specifying values is only required for tasks requiring this, so in
many scenarios this screen will not be necessary at all. As is the case
with many other screens of the application, a user instruction mes-
sage just beneath the page heading helps the user in performing the
right steps to reach a goal. The specify values screen lists the selected
objects and their minimum, maximum and step values. The user can
use the up and down arrows in the text-box on the right-hand side to
select a suitable value. Using only these arrows makes sure the value
in the textbox conforms to the minimum, maximum and step con-
straints. This construction has another advantage: error handling can
be limited, because values are already constrained. However, the user
is allowed to input a value himself/herself (without using the arrows)

[July 14, 2013 at 13:41 – classicthesis version 1.0]

18 concepts and design

Figure 9: The specify task screen of the interface.

Figure 10: The specify values screen of the interface.

and thus can choose an inappropriate value. The interface deals with
this situation by displaying warning messages to the user. Clicking
the button Select Task adds the task to the selected tasks menu as is
displayed in Figure 11.

The environment page shows all the available objects (filtered on
the user’s location) grouped on their type. Figure 12 shows an extrac-
tion of this screen for the object type light.

The last screen which is designed is the profile screen. As can be
seen in Figure 13 the information provided is very limited. This de-
cision has been made to make sure only the relevant information is
shown and to keep the interface as simple as possible.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

3.6 interface design 19

Figure 11: The selected tasks menu which is displayed on the right of the
screen.

Figure 12: An extraction of the environments page: all the available lights.

Figure 13: The profile screen of the interface.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

20 concepts and design

3.7 application dependencies

The web-based application depends on many existing components.
An example of such a component is the planner which decides the
steps needed to accomplish a user-defined task. The location of the
planner needs to be known in order to execute tasks. The decision
has been made to store the address of the planner as a constant in the
application.

In section 3.3, the information stored in the repository was summed
up. The location of the object, which is an example of repository data,
needs to have a predefined format because initial state information
has to be extracted from it. The initial state information is needed for
a proper problem specification. Initial state information also includes
data about available locations and their types (refer to section 3.2.3).
Suppose there exists a object with location nijenborgh.dep16.office34.
The application needs to extract from this location the following in-
formation:

1. The name of the building

2. The name of the department

3. The name of the office

The names of the building, department and office are respectively
nijenborgh, dep16 and office34. This information can be extracted due
to the predefined format, namely <building >.<department >.<office
>.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

4
I M P L E M E N TAT I O N

Now that the concepts and design have been specified in detail it is
time to bring the ideas into practice. The techniques used are elabo-
rated upon and the realization of the concepts introduced in chapter
3 is described.

4.1 framework

Choosing a framework is not an obligatory step, but is often use-
ful especially for developing web-applications. Many web-application
frameworks exist, each has a different vision, but they share enabling
easy development of a web application. Based on previous experi-
ences the Play Framework [5] was chosen. This framework focuses
on programming languages Java and Scala. The framework is "based
on a lightweight, stateless, web-friendly architecture and features pre-
dictable and minimal resource consumption (CPU, memory, threads)
for highly- scalable applications" [4]. The Play Framework uses the
Model-View-Controller (MVC) design pattern which divides the de-
sign of an application into three parts: data model (model), data rep-
resentation (view) and application logics (controller). This separation
improves the readability and reusage of code. The author used Play
Framework version 2.0.4 even though this was not the most recent
version at the beginning of the project. This decision has been made
in order to make sure the version used is stable enough to develop
a web application without (major) flaws. The problem with bleed-
ing edge software, as would be the case when choosing e. g., version
2.1.0, is that it often contains unresolved bugs and that it is not widely
adopted by its users yet.

4.2 web design languages

The implementation of a web application requires several web pro-
gramming languages. The languages used are briefly described in
this section.

21

[July 14, 2013 at 13:41 – classicthesis version 1.0]

22 implementation

HTML

HyperText Markup Language (HTML) does not need much explana-
tion because of its popularity nowadays. Building a web page with-
out HTML is practically impossible. The Play Framework combines
Scala and HTML for creating web pages. This way, it is possible to
display application data on a webpage.

CSS

The styling of webpages is done by using CSS for external stylesheets.
Using external stylesheets is advantageous because the content of the
webpages is separated from the design.

jQuery

A good user interface enables user interaction. The web application
uses jQuery for enabling interactive design of webpages.

4.3 wami toolkit

A multi-modal interface provides the user with the ability to use mul-
tiple modes of interfacing with the system. A multi-modal interface
aims at providing more flexibility for the user. Using e. g., speech
gives the user the possibility to use more natural ways of interfacing
with the application. The WAMI toolkit [9] is suitable for use in this
application, because it is very easy to include it on a web application
and, most importantly, adds an extra dimension to the application.
Several existing multi-modal interfaces require the use of special web
browsers, the WAMI toolkit can be used on standard web browsers
such as Mozilla Firefox, Opera, Safari and Internet Explorer. A disad-
vantage of the toolkit is that it depends on Adobe Flash and the user
should grant permission for accessing the microphone. Securing the
user’s privacy is definitely a good thing. On the contrary, the user
needs to do more work to use the voice input functionality. In sum-
mary, the advantages of the toolkit outweigh the disadvantages so it
is a valuable addition to the application.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

4.4 planner 23

4.4 planner

Recall from section 3.2 that the planner is responsible for making de-
cisions in the case the user wants a task to be executed. The planner
receives a specification of the task and the initial state and generates
a list of steps to be taken in order to execute the task. The implemen-
tation of the planner is not in the scope of this project: the planner
was available at the start of this project.

The application connects to the planner using a RESTful web ser-
vice. A RESTful web service is a client-server application based on
the REpresentational State Transfer (REST) architecture. Every piece
of information in a RESTful web service should be referred to as a re-
source. The RESTful web service allows the application (REST-client)
to communicate with the planner (REST-server) over the internet. In
fact, the planner receives a large string containing the user-defined
problem specification. The Play Framework provides support for in-
terfacing with RESTful web services, so connecting to the planner was
relatively straightforward.

The planner used for the development of the application was devel-
oped by Georgievski. The HTN planner is named the Scalable Hier-
archical Planner (SHP) and its first prototype is fully implemented in
Scala. The planner uses depth-first search to find a solution, if there
is any. As is the case with other planners, the SHP requires a prob-
lem and domain specification. These specifications are implemented
using the description language Hierarchical Planning Domain Lan-
guage (HPDL).

HPDL was an attempt by Georgievski to standardize description
languages for HTN planners. HPDL is a task-centred language where
a task can be either an action or a method. The language is based
on Planning Domain Definition Language (PDDL) which was an at-
tempt by Mcdermott et al. to create a universal language for planners.
The extension to HPDL is needed, because PDDL is limited with re-
spect to the possible tasks the user can choose from: only actions
can be selected. The strength of the application is the possibility to
choose (complex) tasks, thus the planner needs HPDL as the descrip-
tion language. Examples of domains and problems implemented us-
ing HPDL [6] are given in the Appendix and are clarified in the fol-
lowing sections.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

24 implementation

4.4.1 Domain

Figure 3 presented the flow of data between existing systems. Domain
knowledge is needed by the planner in order to make decisions. The
domain is implemented as a plain-text file structured according to
HPDL. An example heading of a domain file is displayed in Listing 1

of Appendix A.
Note that this file is not complete in the sense the allowable ac-

tions and tasks are not listed. The structure of the actions and task is
discussed later, first the domain heading is explained.

The name of the domain is specified on line 2. Line 3 enumerates
the requirements for the planner. The planner uses the requirements
to determine if it can handle the domain. If this is not the case, the
planner can skip over the domain immediately [6].

Lines 7 - 9 specify the possible types of variables used in action and
task definitions. The types are needed to bind appropriate objects to
task/action parameters. In this domain, a variable can be of type floor,
room, light or screen.

A predicate is a statement that is either true or false. The planner
needs the predicates to know the possible statements in the domain.
The predicates in this example can be used to state that a room is on a
floor, something is in a room, a device is turned-on, a light has a value
(the level of lux) and a sensor has a value. The name immediately
following the opening bracket indicates the name of the predicate and
the following words represent variables of the predicate. In HPDL
words starting with a question mark denote a variable.

A different example which deals with an action is given in Listing
2 of Appendix A. The domain heading is omitted since it is already
explained above.

Recall that an action is a simple task with an observable effect. turn-
of-screen is an action which has parameters of types floor, room and
screen. Of course the planner needs to know which screen should be
turned off and in which room and floor the screen is located. Most
actions can only be executed when the environment complies with
certain conditions. These conditions are specified in the precondition.
The precondition states that in order to execute the action turn-of-
screen, the room should be located in the floor, the screen should be
located in the room and the screen should be turned on. It does not
make sense to turn off a screen while it is already off and that justifies
the last condition. The effect, also called postcondition, explains what
will change in the environment after the action has been executed. In

[July 14, 2013 at 13:41 – classicthesis version 1.0]

4.4 planner 25

this example, the effect is very simple because the only effect is that
the screen parameter is not turned on, exactly what the action name
is indicating.

The last example listed in 3 shows a domain file handling a task
which generally consists of multiple methods.

The task used in the example is print-a-document which is a realistic
example of a daily pursuit of an office user. As described in section
3.2.1.1, a method is a possible way to achieve a task. A method can dis-
tinguish different states of the environment which is the case in listing
3. The first method handles the case in which the printer is turned off.
The precondition needs to be satisfied, so the room should be located
in the floor, the printer should be located in the room and the printer
should, of course, be turned off. The actions taken to print the docu-
ment will be to turn the selected printer on first and then to send the
document to the printer. The sequence keyword is used to emphasize
the importance of the order of execution. Interchanging the actions
turn-on-printer and print-document will have dramatic effects, because
the printer is not turned on and the document will probably not be
printed at all. In the case the order of execution is not important, the
keyword unordered should be used instead of sequence. The second
method is straightforward since the printer is already turned on and
the only thing which needs to happen is to send the document to the
printer. Notice the use of the keyword unordered here, even though
in this case we could have used sequence as well, because there is
only one action to be executed.

4.4.2 Problem

Domain knowledge is not enough to get the planner started, because
the planner needs to know which decision-making problem needs to
be solved. The first part of an example problem file specified in HPDL
is given in Listing 4 of Appendix B.

Note the correspondence of the structure of the init part and the
structure described in section 3.2.3. The first two lines in the init part
fit in rule 1 represent the fact that firstFl is a floor and room848 is a
room. The three lines following are examples of rule 2. They state that
deskLight02 and deskLight03 are lights and allInOnePr12 is a printer.
The next two lines comply with rule 3 and indicate that deskLight03

has value 340 (this value could for instance be the amount of illumi-
nance) and that allInOnePr12 is turned on. Finally, the last two lines

[July 14, 2013 at 13:41 – classicthesis version 1.0]

26 implementation

illustrate rule 4: room848 is located on floor firstFl and allInOnePr12

is in room848.
The next example, listed in 5 of Appendix B, illustrates the struc-

ture of the task specification.
A specification of a task can consist of any combination of actions

and tasks, therefore it is allowed to execute multiple tasks/actions at
once. This powerful feature of the application is illustrated in Listing
5. The planner should figure out a plan which makes sure that light
deskLight02 is turned on first. Document unnamedDoc should then
be printed on printer allInOnePr12 (located on floor firstFl in room
room848). Finally, screen76 should be turned off.

The problem file needs to be generated by the application. This is
in contrast to the domain file which is already present and is used by
the application. Information about the initial state is gathered from
the repository (4.5) whilst task specification is done by the user of the
smart office interface. A domain file on its own is not useful for the
planner, a problem file is not either. The combination of domain and
problem file defines a problem with respect to a certain domain and
this decision-making problem can be handed over to the planner.

4.5 repository

The repository stores data about services. A service is defined as an
object of a specific type located somewhere. The repository is im-
plemented as a Cassandra-based database [1] system. The relevant
information for the smart office interface can be extracted from it as a
JavaScript Object Notation (JSON)-file. This file is not generated by the
application but was already available at the start of this project. An
example repository implementation is given in Listing 6 in Appendix
C.

The squared brackets indicate that a list is declared. Curved brack-
ets represent an object. An object has several fields, separated by a
comma. Each field has a key and a value. For example, line 3 spec-
ifies a field with key "servicetype" and value "thermostat". Example
applications of the service data include:

• Representing the available services in a given location

• Selecting task parameters for task execution

• Limiting the possible values for a task parameter

[July 14, 2013 at 13:41 – classicthesis version 1.0]

4.6 environment state change notifier 27

• Generating domain (initial state) knowledge: location of a ser-
vice

4.6 environment state change notifier

The environment state change notifier is simulated using RabbitMQ
[18]. RabbitMQ is a message broker which enables messaging for the
smart office interface. RabbitMQ can be used to send state updates to
the application by using e. g., the producer-consumer mechanism in
combination with an exchange. Suppose the value of service thermo-
stat3_292 is updated to 19.5. All subscribers are being notified, receive
the new value of the corresponding service and update the "updated-
value" field of the service with "varname" thermostat3_292 to 19.5.

4.7 application architecture

In this section the architecture of the application is graphically dis-
played and the diagrams are elucidated. Using a top-down approach,
the most important classes of the application are explained. Not all
fields/methods are shown in the class diagram, only the most impor-
tant data is shown.

The class UserData is the entry point of the application and con-
tains all the data a user needs in order to work with the application.
Figure 14 shows this class and its relationship with two other classes
InitObject and Task. UserData contains the field selectedTaskArgs which
is needed to remember the arguments for a specific selected task.
inputMode represents the selected input mode for task specification:
either manual or graphical (default). In the case the state of the envi-
ronment has changed, the method updateData is used.

An InitObject has a list of SimpleInitObjects containing all the
available objects. The method readInitFile is very important: it makes
sure the objects are read and stored. Initial state information is added
by using addLocationAndVariablePredicates. The Task class basically
contains a list of tasks. A task has two important fields: the name
of the task and the list with parameter types.

As could be remarked about Figure 14, UserData has two more
important fields: service and goal. Figure 15 graphically displays the
relationship of UserData with the corresponding classes. The class
Service has as main task keeping a list of objects which are grouped
on their type. This is needed for specifying task parameters: a param-

[July 14, 2013 at 13:41 – classicthesis version 1.0]

28 implementation

Figure 14: The UserData class and two related classes.

Figure 15: The UserData class and the two other related classes.

eter is of a certain type and thus only the objects with this type are
appropriate.

The Goal class knows which tasks are selected as goal and provides
methods to add or remove tasks. If the user wants to execute tasks,
the generatePlannerInput method is called to prepare the input for the
planner.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

5
C O N C L U S I O N S A N D F U T U R E W O R K

The presented work proposes a web-based interface for smart of-
fices in order to make the role of the smart office user more active.
The web application was developed taking into account several objec-
tives. Each objective is restated and contains a description including
whether the objective is accomplished and what the future work is
that should be done.

1. Make the role of the smart office user more active: the smart
office autonomously makes decisions which do not always sat-
isfy the user’s needs

By using the smart office interface, the author claims the user’s
role has become more active due to giving the user the ability
to select (complex) tasks. Furthermore, the user can request the
status of the environment, so the user is more aware of what
is going on in the environment. The combination of the smart
office autonomously making decisions without requiring user
involvement and the user defining what should happen in the
environment makes the life of the smart office user more com-
fortable: On the one hand many things are regulated automati-
cally, but on the other hand the user has the possibility to influ-
ence the actions taken in the office.

2. Create a user-friendly interface which is unintrusive and easy
to use

User-friendliness, unintrusiveness and easiness of use are sub-
jective requirements which need to be evaluated by the user. In
order to establish realizable results, the smart office interface
should be judged by the user. Therefore, a suggestion for fu-
ture work would be to conduct an investigation focusing on the
usability of the smart office interface. Nevertheless, during the
development of the interface care has been taken to make the
interface as user-friendly as possible, so that the user regards
the interface as unintrusive and easy to use.

29

[July 14, 2013 at 13:41 – classicthesis version 1.0]

30 conclusions and future work

3. Provide the ability to select complex tasks and to show the
environmental state

The interface was mainly developed to enable the user to se-
lect complex tasks. The prototype shipped with this paper in-
cludes a graphical and manual interface for selecting and exe-
cuting tasks of any complexity, so the first part of the objective
is accomplished. The second part of the objective is also accom-
plished, because the smart office interface contains an environ-
ment page on which all the available objects are grouped on
their type.

4. Enable easy and natural interaction such as speech-based in-
teraction

Even though many users are comfortable with using mouse and
keyboard as input devices, for smart offices more natural ways
of interaction are highly desired. The web application enables
voice input by making use of the WAMI toolkit (as described
in more detail in section 4.3). The evaluation of this feature
by the smart office user has not been performed and can be
considered as future work. Irrespective of the user’s judgment,
selecting a specific task from a large number of tasks is proba-
bly much easier when using voice input compared to using the
usual mouse/keyboard combination.

5.1 future work

There are several interesting improvements possible which had to be
left aside due to time restrictions.

The first feature that would make the application more user-friendly
is to represent tasks by using representative images. The current graph-
ical representation of tasks makes use of automatically generated text-
based images. The implementation of representative images requires
additional information. Using e. g., useful icons for representing tasks
would make the smart office interface more manageable and thus
more easy to use. This feature could be added by e. g., storing the
icons and their names in a database.

The environment page of the web application groups the available
objects on their types. Johanson et al. states that "the interface should
take advantage of natural mappings to the physical structure" which
can be achieved by sustaining the hierarchy of the environment: e. g.,
let the user select the building first, then the floor and finally the

[July 14, 2013 at 13:41 – classicthesis version 1.0]

5.1 future work 31

room. A different approach to make the environment page more user-
friendly is to show images of the devices present in an office: again
this requires storing the images in e. g., a database.

The prototype shipped with this paper allows users to select and
execute tasks but is not connected to physical devices such as sensors
and actuators. Adding this connection enables users of the smart of-
fice interface to control an office physically, which is exactly where
the interface is necessary for.

The application currently has limited support for voice input. Ex-
tension of this functionality will probably lead to a more user-friendly
application. A possible extension is the feature to select and execute
actions immediately by using one simple voice command.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

B I B L I O G R A P H Y

[1] Apache. The Apache Cassandra Project Homepage, July 2013.
URL http://cassandra.apache.org/. (Cited on page 26.)

[2] Juan Carlos Augusto. Past, present and future of am-
bient intelligence and smart environments. In ICAART,
pages 11–18. INSTICC Press, 2009. ISBN 978-989-8111-66-1.
URL http://dblp.uni-trier.de/db/conf/icaart/icaart2009.

html#Augusto09. (Cited on page 1.)

[3] Diane J. Cook et al. Smart environments - technologies, protocols
and applications. Wiley, 2nd edition, 2005. ISBN 978-0-471-54448-
5. (Cited on page 3.)

[4] Play Framework. Play Framework 2.0.4 documentation, April
2013. URL http://www.playframework.com/documentation/2.0.

4/Home. (Cited on page 21.)

[5] Play Framework. Play Framework homepage, April 2013. URL
http://www.playframework.com. (Cited on page 21.)

[6] I. Georgievski. Hierarchical Planning Domain Language. Tech-
nical Report 0, Johann Bernoulli Institute for Mathematics and
Computer Science, 2013. (Cited on pages 23 and 24.)

[7] I. Georgievski. Scalable Hierarchical planner homepage, July
2013. URL http://planner.ilche.info. (Cited on page 23.)

[8] Ilche Georgievski et al. An overview of hierarchical task network
planning. Technical report, University of Groningen, JBI 2012-12-
5, 2012. (Cited on page 10.)

[9] Alexander Gruenstein et al. The WAMI toolkit for developing,
deploying, and evaluating web-accessible multimodal interfaces.
In Proceedings of the 10th International Conference on Multimodal
Interfaces (ICMI ’08), Chania, Crete, Greece, pages 141–148, 2008.
(Cited on page 22.)

[10] Dummy Images. Dummy Image Generator, April 2013. URL
http://www.dummyimage.com. (Cited on page 17.)

33

[July 14, 2013 at 13:41 – classicthesis version 1.0]

http://cassandra.apache.org/
http://dblp.uni-trier.de/db/conf/icaart/icaart2009.html#Augusto09
http://dblp.uni-trier.de/db/conf/icaart/icaart2009.html#Augusto09
http://www.playframework.com/documentation/2.0.4/Home
http://www.playframework.com/documentation/2.0.4/Home
http://www.playframework.com
http://planner.ilche.info
http://www.dummyimage.com

34 Bibliography

[11] Amit Jakhu. Login Form, April 2013. URL http://designerfuel.

tumblr.com/post/15555140593/login-form-psd-live. (Cited
on page 15.)

[12] Zhang Jianhong et al. Improved htn planning approach for ser-
vice composition. In Proceedings of the 2004 IEEE International Con-
ference on Services Computing, SCC ’04, pages 609–612, Washing-
ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2225-
4. URL http://dl.acm.org/citation.cfm?id=1025130.1026213.
(Cited on page 10.)

[13] Brad Johanson et al. The Interactive Workspaces Project: Experi-
ences with Ubiquitous Computing Rooms. IEEE Pervasive Com-
puting, 1:67–74, 2002. (Cited on pages 14 and 30.)

[14] Eirini Kaldeli et al. Coordinating the web of services for a smart
home. ACM Trans. Web, 7(2):10:1–10:40. ISSN 1559-1131. (Cited
on pages 10 and 11.)

[15] Tiiu Koskela et al. Evolution towards smart home environments:
empirical evaluation of three user interfaces. Personal Ubiquitous
Comput., 8(3-4):234–240, July 2004. ISSN 1617-4909. (Cited on
pages ix, 4, 5, and 6.)

[16] Christophe Le Gal et al. Smart office: Design of an intelligent en-
vironment. IEEE Intelligent Systems, 16(4):60–66, July 2001. ISSN
1541-1672. (Cited on page 6.)

[17] D. Mcdermott et al. PDDL - The Planning Domain Definition
Language. Technical Report TR-98-003, Yale Center for Compu-
tational Vision and Control, 1998. (Cited on page 23.)

[18] RabbitMQ. RabbitMQ homepage, April 2013. URL http://www.

rabbitmq.com. (Cited on page 27.)

[19] Carlos Ramos et al. Smart offices and intelligent decision rooms.
In Handbook of Ambient Intelligence and Smart Environments, pages
851–880. 2010. (Cited on page 6.)

[20] Dirk Roscher et al. A meta user interface to control multimodal
interaction in smart environments. In IUI ’09: Proceedingsc of the
13th international conference on Intelligent user interfaces, pages 481–
482, 2009. (Cited on pages ix, 4, and 5.)

[21] Derby Webdesign. Response Template, April 2013.
URL http://www.derby-webdesign.co.uk/2012/09/

[July 14, 2013 at 13:41 – classicthesis version 1.0]

http://designerfuel.tumblr.com/post/15555140593/login-form-psd-live
http://designerfuel.tumblr.com/post/15555140593/login-form-psd-live
http://dl.acm.org/citation.cfm?id=1025130.1026213
http://www.rabbitmq.com
http://www.rabbitmq.com
http://www.derby-webdesign.co.uk/2012/09/response-free-responsive-website-template
http://www.derby-webdesign.co.uk/2012/09/response-free-responsive-website-template

Bibliography 35

response-free-responsive-website-template. (Cited on
page 15.)

[22] Qiang Yang et al. Learning recursive HTN-method structures for
planning. In Workshop on Artificial Intelligence Planning and Learn-
ing, Proceedings, 2007. URL http://www.cs.umd.edu/~ukuter/

icaps07aipl/. (Cited on page 10.)

[July 14, 2013 at 13:41 – classicthesis version 1.0]

http://www.derby-webdesign.co.uk/2012/09/response-free-responsive-website-template
http://www.derby-webdesign.co.uk/2012/09/response-free-responsive-website-template
http://www.cs.umd.edu/~ukuter/icaps07aipl/
http://www.cs.umd.edu/~ukuter/icaps07aipl/

[July 14, 2013 at 13:41 – classicthesis version 1.0]

Part I

A P P E N D I X

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

A
E X A M P L E D O M A I N F I L E S I N H P D L

In this chapter of the Appendix examples of domain files specified in
HPDL are given.

a.1 domain heading

Listing 1 below shows a first example domain file in HPDL. Three
dots are used to indicate that code which can be spread over multiple
lines is left out.

Listing 1: An example domain file in HPDL.

1 (define

2 (domain smartoffices)

3 (:requirements

4 :strips :typing :negative-preconditions

5 :universal-preconditions

6)

7 (:types

8 floor room light screen

9)

10 (:predicates

11 (on ?room ?floor)

12 (in ?something ?room)

13 (turned-on ?device)

14 (light-value ?light ?luxLevel)

15 (light-value-sensor ?sensor ?luxLevel)

16)

17 ...

18 (:action ...)

19 ...

20 (:task ...)

21 ...

22) �

39

[July 14, 2013 at 13:41 – classicthesis version 1.0]

40 example domain files in hpdl

a.2 domain action

Listing 2 below shows an example domain file illustrating an action.
Three dots are used to indicate that code which can be spread over
multiple lines is left out.

Listing 2: An example domain file illustrating an action.

1 (define

2 ...

3 (:action turn-off-screen

4 :parameters (?f - floor ?r - room ?s - screen)

5 :precondition (and (in ?r ?f) (in ?s ?r) (turned-on ?s))

6 :effect (not (turned-on ?s))

7)

8 ...

9) �

[July 14, 2013 at 13:41 – classicthesis version 1.0]

A.3 domain task & method 41

a.3 domain task & method

Listing 3 below shows an example domain file illustrating a task and
two methods. Three dots are used to indicate that code which can be
spread over multiple lines is left out.

Listing 3: An example domain file illustrating a task and two methods.

1 (define

2 ...

3 (:task print-a-document

4 :parameters (?f - floor ?r - room ?d - document ?p - printer)

5 (:method printer-turned-off

6 :precondition (and (in ?r ?f) (in ?p ?r) (turned-off ?p))

7 :tasks (sequence (turn-on-printer ?f ?r ?p) (print-document

?d ?p))

8)

9 (:method printer-turned-on

10 :precondition (and (in ?r ?f) (in ?p ?r) (turned-on ?p))

11 :tasks (unordered (send-document-to-printer ?d ?p))

12)

13 ...

14)

15 ...

16) �

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

B
E X A M P L E P R O B L E M F I L E S I N H P D L

In this chapter of the Appendix examples of problem files specified
in HPDL are given.

b.1 problem heading

Listing 4 below shows a first example problem file in HPDL. Three
dots are used to indicate that code which can be spread over multiple
lines is left out.

Listing 4: An example problem file in HPDL.

1 (define

2 (problem smartofficesproblem)

3 (:domain smartoffices)

4 (:requirements :strips)

5 (:init

6 (floor firstFl)

7 (room room848)

8 (light deskLight02)

9 (light deskLight03)

10 (printer allInOnePr12)

11 (light-value deskLight03 340)

12 (turned-on allInOnePr12)

13 (on room848 firstFl)

14 (in allInOnePr12 room848)

15)

16 (:goal-tasks

17 ...

18)

19) �

43

[July 14, 2013 at 13:41 – classicthesis version 1.0]

44 example problem files in hpdl

b.2 problem task

Listing 5 below shows an example problem file illustrating task speci-
fication. Three dots are used to indicate that code which can be spread
over multiple lines is left out.

Listing 5: An example problem file illustrating task specification

1 (define

2 ...

3 (:goal-tasks

4 (sequence

5 (turn-on-light deskLight02)

6 (print-a-document firstFl room848 unnamedDoc allInOnePr12)

7 (turn-off-screen screen76)

8)

9)

10 ...

11) �

[July 14, 2013 at 13:41 – classicthesis version 1.0]

C
E X A M P L E R E P O S I T O RY F I L E

An example repository file is given below. Three dots are used to
indicate that more objects are following.

Listing 6: An example extraction from a repository file in JSON.

1 [

2 {

3 "varname": "thermostat3_292",
4 "servicetype": "thermostat",
5 "varlocation": "nb.92 .room",
6 "updatedvalue": " 15.0 ",
7 " controllable ": " true",
8 "datatype": " float ",
9 "domainstates":

10 {

11 "range" :

12 {

13 "max": " 30.0 ",
14 "min": " 5.0 ",
15 "step": " 0.1 "
16 }

17 },

18 "routingkey": "nijenborgh . floor2 .room292 . actuators .
thermostats . thermostat3_292",

19 },

20 ...

21] �

45

[July 14, 2013 at 13:41 – classicthesis version 1.0]

[July 14, 2013 at 13:41 – classicthesis version 1.0]

D
I N S TA L L AT I O N G U I D E

Running the application is straightforward, because the Play Frame-
work has built-in functionalities to generate a stand-alone executable.
The various steps needed to get the application up and running are
explained in detail below.

d.1 installation instructions

The steps needed to install the application are described below:

1. Extract the attached .zip file to a location of your choice.

2. Start a terminal of your choice and change your current direc-
tory to the location of the .zip file you extracted in step 1.

3. Run the file start in the terminal.

4. Start Google Chrome/Chromium or Mozilla Firefox.

5. Surf to http://localhost:9000 and you are ready to use the web-
application.

d.1.1 Clarification

Extract the attached .zip file to a location of your choice
Most Operating Systems have built-in unzip applications. If this is
not the case, you can use e. g., 7-zip (http://www.7-zip.org/) which
works on several operating systems.

Start a terminal of your choice and change your current directory to
the location of the .zip file you extracted in step 1
You might need to change the access settings of the start file. For
Linux-like systems, "chmod +x ./start" will probably work.

Start Google Chrome/Chromium or Mozilla Firefox
The application is thoroughly tested on Google Chrome/Chromium
and Mozilla Firefox. Other browsers can be used, but this is not rec-
ommended. Especially the layout of the webpages may deviate.

47

[July 14, 2013 at 13:41 – classicthesis version 1.0]

48 installation guide

Surf to http://localhost:9000 and you are ready to use the web-application
Hint: store the URL in your bookmarks to be able to access the appli-
cation faster.

[July 14, 2013 at 13:41 – classicthesis version 1.0]

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

[July 14, 2013 at 13:41 – classicthesis version 1.0]

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

[July 14, 2013 at 13:41 – classicthesis version 1.0]

D E C L A R AT I O N

I hereby declare that this thesis is my own work and effort and that
it is not submitted anywhere else for any award. Usage of external
sources is acknowledged where applicable.

Groningen, July 2013

Jorrit de Boer

[July 14, 2013 at 13:41 – classicthesis version 1.0]

	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Thesis structure

	2 Smart Environments
	2.1 Smart Offices
	2.2 Related Projects
	2.2.1 Interface Design
	2.2.2 Smart Office Applications

	3 Concepts and Design
	3.1 An overview
	3.2 Planning
	3.2.1 HTN Planning
	3.2.2 Domain
	3.2.3 Problem

	3.3 Repository
	3.4 Environment State Change Notifier
	3.5 Requirements
	3.5.1 Functional Requirements
	3.5.2 Non-functional Requirements

	3.6 Interface Design
	3.7 Application Dependencies

	4 Implementation
	4.1 Framework
	4.2 Web Design Languages
	4.3 WAMI toolkit
	4.4 Planner
	4.4.1 Domain
	4.4.2 Problem

	4.5 Repository
	4.6 Environment State Change Notifier
	4.7 Application Architecture

	5 Conclusions and Future Work
	5.1 Future Work

	Bibliography
	Appendix
	A Example Domain Files in HPDL
	A.1 Domain Heading
	A.2 Domain Action
	A.3 Domain Task & Method

	B Example Problem Files in HPDL
	B.1 Problem Heading
	B.2 Problem Task

	C Example Repository File
	D Installation Guide
	D.1 Installation Instructions
	D.1.1 Clarification

	Colophon
	Declaration

