university of faculty of mathematics
groningen / and natural sciences

Modeling a Planning Domain for Smart

Offices

Bachelor’s thesis

August 2013

Student: Angele Croes

Daily supervisor: ir. Ilche Georgievski
Primary supervisor: Prof. dr. ir. Marco Aiello

Secondary supervisor: Prof. dr. ir. Paris Avgeriou

Abstract

The planning of services for smart offices can be done using the Hierarchical
Task Network planning technique. A state-based HTN planner to be more ex-
act. This kind of planner needs task decompositions and state transitions in
order to compose a plan and both these things are included in the domain de-
scription. This paper focuses on the domain description in Hierarchical Planning
Domain Language (HPDL). A scenario is developed to showcase how a domain
is described in HPDL. Also a problem description in HPDL is developed to test
the output of the planner given the domain description. Furthermore, the per-
formance of the planner given the domain description is tested since it mostly
depends on the manner the domain was modeled.

It is concluded that HPDL works well for modeling the domain and that the
functionality and performance of the domain modeled for this paper was as
expected.

Contents

1 Introduction

2 Background

2.1 Smart offices
2.2 Automated planning L
2.3 HPDL e

3 Related work

4 Scenario: getting room ready for demonstration

4.1 Datamodeling oL
4.2 Domainin HPDL
4.2.1 Typing e
4.2.2 Predicates Lo
423 Actions
424 Tasks
4.3 Problem description in HPDL
4.4 Output
4.5 Requirements L

5 Performance
6 Conclusion
7 References

A Grammar HPDL
A.1 Domain Description
A.2 Domain Description,
A3 Requirements

B Domain: enso

C Problem descriptions

18

20

22

24
24
26
27

28

36

Chapter 1

Introduction

It was only 10 years ago when people were getting used to having cell phones.
Back then their main and basically only functionality was to receive and make
phone calls. These basic cell phones then became smartphones. The smart-
phone is not only used as a phone, by now most of them are our media player,
camera and GPS too. Most importantly however is that it allows its user to
connect to the internet and that adds many more functionalities. Why do we
call these upgraded cell phones smartphones then? The term “smart” was added
to things that made our lives easier, mostly some kind of system. The reason
this term was used is because the services provided gave the illusion that the
system is able to think. There are already smart tv’s, smart board and many
other appliances connected to the internet that can be viewed as smart appli-
ances. The next step in the evolution of smart technology is to go from smart
appliances to complete smart environment.

Smart environments will make decisions and take actions based on informa-
tion obtained from the users, us mere humans, either directly or indirectly.
According to Ramos et al. [10], the entire purpose of such environment is “to
interact with human beings in a helpful, adaptive, active and unobtrusive way”
[10]. Besides improving our own comfort and ease, there are many other goals
that can be achieved by building smart environments. One of these goals is
reducing the energy consumption as much as possible.

The University of Groningen is currently developing a framework for Energy
Smart Offices (further referenced to as EnSO) along with Eindhoven Technical
University, Philips and IBM. Their aim is “to couple, for the first time, ad-
vanced research and novel techniques in ambient network technology, activity
recognition and artificial intelligence planning with innovative service-oriented
approaches, thus developing a truly energy-aware platform for the offices of
tomorrow”[1]. The smart office envisioned for this project is a smart environ-
ment where the environment refers to offices. It must make decisions as to what
actions needs to be taken to complete the goal task in the most energy efficient
manner. Among all the computational techniques available to solve such de-
cision making problems, artificial intelligence planning is the most intrinsically
interesting. For the planning technique there has to be a domain and a problem
that can be solved by adapting the environment in the form of a sequence of ac-

tions. For this thesis, the domain is of particular interest.The domain provides
all necessary information to the planner so it can effectively do its job when
given a problem description. This leads to the subject of this paper, which is
the modeling of the domain for a smart office. Specifically how the domain is
modeled for the EnSO project.

The next chapter is dedicated towards explaining some core concepts, which
are smart offices, automated planner and HPDL. Next some attention is paid to
related work. The creation of the domain model is explained using an example
in chapter 4. Chapter 5 focuses shortly on the performance of the planner. The
conclusions reached are featured in the chapter after that and finally some rec-
ommendations for future work related to this subject can be found in the last
chapter.

Chapter 2

Background

In this chapter we provide background information on concepts and techniques
necessary to understand the domain of smart offices and the way of creating
office adaptations.

2.1 Smart offices

There are many kind of offices, but they usually have some kind of common
ground. They all serve the purpose of being used to work in. Almost all have
the somewhat the same furnitures and appliances. A smart office is an ordinary
office that offers some extraordinary services. Services that almost all environ-
ments offer like turning the light on and some specific to the office environment
such as pulling down a projection screen.

A term that goes hand in hand with smart offices is ubiquitous computing [6].
Ubiquitous computing is a fancy word used to denote the appearance of having
computing everywhere. The aim of ubiquitous computing is to have natural in-
teraction with computers. Exactly what is considered natural is up for debate.
One can go as far as to say that offices need to be context-aware, meaning they
should be aware of everything such as persons and objects and adapt to this
context. It can also be viewed as having an interactive office, where the user
can give commands to the underlying system. There is no way around the fact
that smart offices would need to have some kind of system that can find out
what commands to execute to reach a directly given goal or a goal derived from
the context.

2.2 Automated planning

There is a field in Artificial Intelligence that concerns itself with the realization
of planning for a sequence of actions that leads to the fulfillment of a certain
goal, which is automated planning. Since the execution of commands can be
seen as giving the system a certain goal and expecting it to be done, automated
planning comes in handy.

Automated planning is done by a planner, which specifies the course of action
that needs to be taken to get from the initial state to the goal state. In order

for the planner to accomplish this, it needs to know what options are available.
This information is passed along in the form of a domain description.

There are many different kinds of planning techniques that get their plans in
many different ways. For the EnSO project, a state-based HTN planner is de-
veloped [4]. HTN stands for hierarchical task network, which means that the
planner can be provided with the primitive tasks that bring an actual change to
the state and with compound task that can composed out of more tasks, prim-
itive or compound. Furthermore, HTN planners need to be given a task as the
goal objective. The state-based HTN planner developed for the EnSO project
will be addressed as the Scalable Hierarchical planner, or SH planner. The SH
planner needs to have a domain with all the tasks and then it can generate a
list of primitive tasks as output when given a problem description as input. The
planner seen as a black box is shown in figure 2.1.

List of actions——»

—Problem description—» P | a n n e r

Figure 2.1: Planner as black box.

2.3 HPDL

As seen the SH planner needs a domain and a problem description. Both these
two need to be in given in the Hierarchical Planning Domain Language (HPDL)
[3]. The HPDL is partially based on the more popular Planning Domain Defini-
tion Language (PDDL) [8]. PDDL was not entirely suitable for HTN planners
such as the SH planner, so HPDL was developed in an effort to meet more of
the requirements.

HPDL describes tasks as either action, a primitive task or as a method, a com-
pound task. It also can be extended to include typing, assignment and negative
preconditions for example, however the planner needs to meet these require-
ments of course. The latest version of HPDL to date, and the one used during
this project, is 0.2 by Georgievski and the grammar is given in appendix A.
More explanation on specific parts of the grammar is given when the scenario
is explained and parts of the domain and problem description is given.

Chapter 3

Related work

Many examples of other smart environment projects can be found, even smart
offices. Active Badge, Monica SmartOffice, Stanford’s Interactive Workspaces
and Intelligent Environment Laboratory of IGD Rostock are all examples of
such projects, some more ambitious than others [11, 2, 5]. The purpose of this
project was not to compare the EnSO project to other existing projects, so the
previously mentioned projects are not discussed as related work.

The subject of domain modeling for smart offices (or smart environments) has
been less researched and documented. However Marquardt and Uhrmacher
have researched using PDDL to create the planning domain in the context of
the MuSAMA (Multimodel Smart Appliance Ensembles for Mobile Applica-
tions) project [9, 7]. In [7] the authors discuss using PDDL for creating Al
planning domains. They do this with the help of some pre-existing scenarios
from literature. The syntax of PDDL is explained through the examples, but
the main product of the paper are the requirements gathered by evaluating the
scenarios used. The requirements vary from very specific PDDL ones to general
static state space ones. All in all the requirements can be seen as very helpful
guidelines when creating a planning domain with PDDL and can be of use when
creating a planning domain with HPDL.

In the paper by Plociennik et al. [9] the subject shifts from the general problem
of planning domains to the specific problem of locking in problem domains. Af-
ter introduction of some approaches that deal with the problem, two approaches
are elaborated on. The two are the locks approach and the guarding approach.
By comparing the two, the conclusion was reached that both were suitable for
solving the persistant action problem. Due to the limited scope of this pa-
per, the option of locking was forgone. When the need arises though, the two
approaches should be considered since HPDL has some similarities with PDDL.

Chapter 4

Scenario: getting room
ready for demonstration

Making a complete domain for an office demands exhaustive work. It is not
necessary though to have the complete domain in order to demonstrate a do-
main model described in HPDL for the purpose of solving a planning problem
in smart offices by using the SH planner. In this thesis, for the purpose of illus-
tration, we take the preparation of a demonstration room as a working scenario.
This scenario entails that there is a room somewhere that can be turned into
a demonstration room. In order to be able to do this we envision it to have a
computer, beamer and projection screen. The only information necessary for
the task to be completed is which room and which computer. A room is said to
be ready for demonstration when the computer and beamer is on and the video
output of the computer is redirected to the beamer. The projection screen that
the beamer is targeting also needs to be lowered and the lighting needs to be
right. The lighting is considered to be right when it is dark enough near the
projection area, but still light further away. As part of the project a domain was
modeled to get a room ready for demonstration from all possible initial states,
permitting all the hardware is set. For example the location of a computer can-
not be changed by a system, the location is just a set of coordinates and that
can be changed but then it would not be in accordance with the real world.
Theoretically speaking the location can be moved with robots for example, but
most offices do not have those and in this scenario things like location are set.

4.1 Data modeling

First step in creating a domain is to model the data. This means all the infor-
mation the planner can have access to.

There are many different kinds of data. The first is data obtained from appli-
ances directly. Each appliance knows what kind of appliance it is, it knows its
location, it knows its state. For every appliance the state can mean different
things. For the scenario the appliances can be roughly divided into two groups.
The pullables are appliances whose state can be either pulled up or pulled down.
The devices are appliances whose state can be either turned on or off. The light
is a special case since it can be a normal device or it can be dimmable, in

which case its state include the intensity percentage of the light. To illustrate
an appliance with a more complex state, the domain could include a printer
that is not used in the scenario itself. A printer can be ready, printing or not
ready. A printer also keeps track of documents in its queue. The appliances all
have identifiers too so that the system can differentiate between the different
instances of one appliance. There are also some appliances that can have some
extra information specific to their sort. A beamer can be targeting a projection
screen and a computer can be connected to a beamer.

Next comes data obtained from sensors. There are many kinds of sensors
and each can provide a system with information. For this particular scenario
the only sensor whose value we are interested in is a lux sensor. Lux sensors
can sense the intensity of light. The lux sensor only needs to keep track of the
room it is in and the value it reads.

There is also contextual data. This data is not necessarily obtained directly
from a sensor of appliance. For this scenario it includes information about the
room like the location and the floor it is on. These are all data set once the
building was built. Contextual data does not have to be set though, it can be
obtained elsewhere. This scenario requires some information about the clarity
outside. This data is obtained from the appropriate meteorological service and
it is assumed that they all provide one of the mentioned clarity level.

4.2 Domain in HPDL

When creating a domain, the first thing that needs to be done is some admin-
istration work.

(define (domain enso)
(:requirements :strips :typing :negative—preconditions
universal—preconditions :numeric—fluents)

The name is necessary since the planner can support more than one domain
and a problem description will need to specify which domain needs to be used
by name. The requirements are features the planner needs to support. This
scenario declares strips, which is the basic STRIPS-style and is the minimum
the planner needs. Typing is also declared in order to type parameters. Neg-
ative preconditions needs to declared to check for the absence of predicates in
preconditions. Universal preconditions is declared to allow the use of for all
in the preconditions, this creates the opportunity of checking a predicate with
more values. Numeric fluents is the last to be declared and can be seen as the
most important one since it allows for the simple arithmetic operations and the
assignment of numerical values.

4.2.1 Typing
Next all the types have to defined.

(:types Room
DemonstrationRoom — Room

Appliance

Device — Appliance

Light Computer Monitor Printer Beamer — Device
Blind ProjectionScreen — Appliance

Coordinate Percentage Luxvalue— number

Clarity

PrinterStatus

)

With the data modeled in a previous stage, it is simple to derive the necessary
types and how they are related. There are two existing types, those are object
and number. The default type is object so in this domain Room, Appliance,
Clarity and PrinterStatus are subtypes of object. The Coordinate, Percentage
and Luxvalue are subtypes of number. The other types are subtypes of a newly
defined type, like Blind is of Appliance.

4.2.2 Predicates

A state is composed out of a collection of predicates. If the predicate is in the
state then it is true and else it is false. This effectively removes the need to have
two predicates for something that can only have two values. The predicates that
are in the state initially is given in the problem description, but the domain also
makes use of predicates for preconditions and effects. The predicates that can
be used have to be declared after the types.

(:predicates location 7?0 — Object ?x 7y — Coordinate)

intensity 7?1 — Light ?p — Percentage)

dimmable ?1 — Light)

turned—on ?7d — Device)

pulled—up ?a — Appliance)

targeting ?b — Beamer 7s —
ProjectionScreen)

(in ?a — Appliance 7r — Room)

(on ?r — Room ?7f — Floor)

(clarity ?c¢ — Clarity)

(light —in—room ?r — Room ?c¢ — Luxvalue)

(

(

(

(

(
(
(
(
(
(

connected 7al 7a2 — Object)

input ?7c — Computer ?d — Device)

output 7c — Computer ?d — Device)

printer—status ?p — Printer 7s —
PrinterStatus)

)

These predicates can also be derived from the data modeled. The way the
predicates are made up vary. For boolean values like turned-on or pulled-up it
is easy to see how it works. The predicate can also have two variables which is
the case for in, if the predicate is true it means that Appliance x is in Room y.

4.2.3 Actions

The whole purpose of the domain is to specify operators that can change the
state. In HPDL this is done by primitive tasks or actions. All the primitive
actions need to declared before the compound tasks. All the actions with their
parameters for the scenario are as following;:

(adjust—light ?1 — Light ?p — Percentage)
(turn—on—light ?1 — Light)

(turn—off—light ?1 — Light)

(turn—on—computer ?c¢c — Computer)
(turn—off—computer ?c¢ — Computer)
(turn—on—monitor ?m — Monitor)

(turn—off—monitor ?m — Monitor)

(turn—on—beamer ?b — Beamer)

(turn—off—beamer ?b — Beamer)

(turn—on—printer ?p — Printer)

(turn—off—printer ?p — Printer)

(pull—=down—blind ?bl — Blind)

(pull—up—blind ?bl — Blind)
(pull—down—projection —screen ?s — ProjectionScreen)
(pull—up—projection—screen ?s — ProjectionScreen)
(set—output—to—beamer ?c — Computer ?b — Beamer)

From the list it is made clear that the actions need to be declared for each type.
The action turn-on-computer for example does the same as turn-on-monitor
and turn-on-beamer with different types. One reason for this is because type
hierarchy is not yet supported by the SH planner. Another reason would be
that there would be no mistake when getting the output. With a single turn-on
action the responsability to get clear output is moved to the problem description
and the need for descriptive names.
A few actions will be elaborated on in the next few paragraphs.

(: action turn—on—computer
:parameters (?7c¢ — Computer)
:precondition (not(turned—on 7c))
ceffect (turned—on 7c)

)

Actions have an effect on the state. If this was the first action then the initial
state would not have included (turned-on ?c) and once the action is “executed”
the state will contain that predicate. Predicates in their most simple forms
are used in simple actions such as turn-on-computer. Proper manipulation of
predicates allows for more complex actions such as adjust-light.

(:action adjust—light
:parameters (7?1 — Light ?p — Percentage)
:precondition (and (intensity ?1 ?x) (I= ?p ?x) (
dimmable ?71))
ceffect (and (not (intensity 7?1 ?x)) (intensity ?
1 ?p))

10

This shows how to change the intensity of a light by connecting the intensity
value and the light through a predicate. The binary comparisons available in
HPDL offer the opportunity to check the value of the intensity. In the real
world it is only logical that one specific dimmable light can only have one value
at a specific moment. The planner only recognizes predicates though and since
(intensity ?1 7x) and (intensity ?1 ?y) are two different predicates, it sees no
problem why both cannot be true so careful attention should be paid when
using predicates in this way to avoid creating real-world paradoxes.

4.2.4 Tasks

While the only way to achieve a change in the state is through an action it
does not mean that everything has to be turned into an action. An action can
become part of a bigger and more complex action, that is referred to as a task
in HPDL. Below are all the tasks for the scenario.

(turn—on—computer—system ?c — Computer)

(dim—lights ?xmin ?ymin ?xmax ?ymax — Coordinate)

(pull—=down—blinds ?r — Room)

(pull—up—blinds ?r — Room)

(dim—projection—area ?r — DemonstrationRoom ?b — Beamer)

(turn—on—lights ?r — Room)

(light —room ?r — Room)

(setup—beamer ?b — Beamer ?c¢ — Computer)

(dim—room ?r — DemonstrationRoom)

(turn—to—demonstration ?r — DemonstrationRoom ?¢ —
Computer)

There are a few things to note from the list. First is that some tasks have a
Room as parameter and others have DemonstrationRoom. This is because some
of the tasks are specific to DemonstrationRoom, which are the rooms with all the
necessary appliances. Secondly, unlike actions the order of the tasks do matter
as. When task A is composed out of task B, then task B has to be declared
before task A. Having to order the tasks is a result of the implementation of the
SH planner and is not in HPDL.

In the following paragraphs a few tasks are elaborated on and some features are
discussed.

(:task turn—on—computer—system
:parameters (?7c¢ — Computer)
(: method monitor—on
:precondition (and (not(turned—on ?c¢)) (Monitor ?
m) (connected "m ?c¢)(turned—on ?m))
:tasks (sequence (turn—on—computer ?c))
)
(: method monitor—off
:precondition (and (not(turned—on ?c¢))(Monitor ?
m) (connected "m 7c¢) (not(turned—on ?m)))
:tasks (sequence (turn—on—computer ?c¢) (turn—on—
monitor 7m))

11

D

The code also shows a big advantage of using tasks, which is the option to define
more states that are accepted through different methods with each a different
set of preconditions. In the code above the preconditions of the two methods
match except for one predicate, in this case that predicate becomes the deciding
factor of which method will be used. If the task is called upon only one method
will be chosen even if preconditions of more than one is met. It is for this reason
that methods should be used to differentiate ways of achieving the same result.
The task setup-beamer is a good example of how all initial states are accepted.
The goal of the task is to set the output of the computer to the beamer and
both have to be on and the projection screen has to be pulled down. These are
three appliances and each with two possible states. Going off this there are 23
different combinations to be considered.

Since working with only true or false predicates severely limits the actions
available, HPDL has the ability to assign a value to a variable. This can be seen
in the following task, where a value needs to be calculated in the precondition.
The predicate with assign in it will always be true, since it is more or less an
action. The use of assign here also showcases another feature of HPDL, which
is the basic binary math operations. It can add, subtract, divide and multiply
numbers.

(:task dim—projection—area
:parameters (?r — DemonstrationRoom 7b — Beamer)
(:method with—blinds—up
:precondition (and (location ?b ?xb ?yb) (assign
?xmin (— ?xb 4)) (assign ?ymin (— ?yb 4))
(assign ?xmax (+ ?xb 4)) (assign ?ymax (+
2yb 1))
:tasks (sequence (pull—-down—blinds ?r) (dim—
lights ?xmin ?ymin ?xmax ?ymax))
)
(:method with—blinds—down
:precondition (and (location ?b ?xb ?yb) (assign
?xmin (— ?xb 4)) (assign ?ymin (— ?yb 4))
(assign ?xmax (+ ?xb 4)) (assign ?ymax (+
2yb 1))
:tasks (sequence (dim—lights ?xmin ?ymin xmax
ymax))
)
)

Aside from assign, there are other operations that can have change a number.
There are scale-up and scale-down and there are increase and decrease.

Recursion is another feature that is usable in theory and depending on how
the planner is implemented within the environment it may be practical. Con-
sider the following task where each dimmable light that is not fully on get turned
on and a normal light that is not turned off gets turned off.

‘ (:task turn—on—lights

12

:parameters (?7r — Room)
(:method there—is—dimmable—light
:precondition (and (Light ?1)(in ?1 ?r) (dimmable
?1) (not (intensity 71 100)))
:tasks (sequence (adjust—light ?1 100) (turn—on-—
lights ?r))

(:method there—is—not—dimmable—light
:precondition (and (Light ?1) (in ?1 ?r) (not (
dimmable ?1)) (not(turned—on ?71)))
:tasks (sequence (turn—on—light ?1) (turn—on—
lights ?r))
)
(: method no—more—lights
:precondition ()
:tasks ()

)
)

Executing actions takes time and the state may not have been changed before
the tasks is called again. This will result in stockpiling the same action more
than once and it will fail after the first time.

Creating the domain in HPDL resulted in having 14 predicates, 17 actions
and 10 tasks. Not all of them are absolutely necessary and a few were added
to make the domain more complete, but most of them were needed to correctly
implement the task of turning a room into a demonstration room. The complete
domain can be found in appendix A.

4.3 Problem description in HPDL

Once the domain model is verified and uploaded onto the planner, a problem
description is needed in order to solve a problem. Creating a problem description
might be a lot of work, but it remains simple.

(define (problem ensol) (:domain enso)
(:requirements :strips)

Just like with the domain, the problem descriptions needs a name and a list
of the requirements for the planner. A problem description also needs to name
the domain that needs to be used to plan the action sequence.

Next is the initialization of all the predicates. The current state of the
environment consists out of a collection of predicates and the initial state needs
to be given in the problem description. Below is a shortened list of the predicates
for an example of a problem description. The complete list is in the problem
description file included in appendix C.

(:init
(Percentage 0)
(Percentage 60)
(Percentage 80)

13

(Percentage 100)

(Room room222)
(DemonstrationRoom room222)
(Light light2.222)
(location light2_222 106 102)
(in light2.222 room222)
(turned—on light2_222)

(Light light4_222)

(location light4.222 106 110)
(in light4_222 room222)
(clarity mostly—sunny)

(light —in—room room222 400)

The first four predicates initialize some numbers of the type Percentage. All
types need to be defined and their values initialized. This is because when the
parameter of a task/action is a number it gets converted into a precondition
for that task/action. So if the parameter is “?x - Percentage”, the problem
description needs to have “(Percentage X)” in the initial value, where X is an
actual value.

The two initializations of room222 shows how to deal with type hierarchy.
DemonstrationRoom was declared as a subtype of Room, but the planner does
not support type hierarchy and in order to achieve the same results the variable
needs to be initialized as both types.

Included in the excerpt is also the initialization of two non-dimmable lights,

Light intensity: 400 fux Clarity. mostly sunny

Tk [k
pulled-up pulled-up pulled-up

‘I <100

. turned-on

Figure 4.1: Initial state from problem description

where one is turned on and the other is turned off. Since the turned-on predi-
cate is false when omitted, the planner recognizes light4_222 as turned off since
there is not a (turned-on light4_222) in the state.

The last two predicates show information that in a real situation would be re-
trieved from the meteorology service and from a sensor.

14

A list of predicates does not give the best idea of how the initial state of the
room is, figure 4.1 is the graphical representations of all the predicates.

With the initial state given the only thing the planner needs to know before
getting to work is what the goal task or tasks are.

(:goal—tasks (sequence (turn—to—demonstration room222
computerl.222)))
)

Following the syntax of the domain any of the tasks and/or actions can be
specified as a goal task.

4.4 QOutput

Light intensity: <400 lux Clarity: mostly sunny
Tk 1 TF
pulled-up pulled-up pulled-up
1 oo o0

turned-on
turned-on.

. turned-on

Figure 4.2: The state after the actions have been executed

With the domain and problem description provided, the planner will gener-
ate the actions needed to achieve the goal task which is to turn room222 into a
demonstration room using computerl_222. The output is as follow:

pull —down—blind (blind3.222)

pull—down—blind (blind2_222)

pull —down—blind (blind1.222)

adjust—light (light3_222 ,60.0)

turn—on—computer (computerl_222)
pull—down—projection—screen (projection —screenl_222)
turn—on—beamer (beamer1_222)

set —output—to—beamer (computerl_222 ,beamerl1_222)

0O Ot Wi+

It will show exactly what actions need to be taken in the language of the domain.
So naming the actions in the domain is important when deciphering the result.
The state of the environment after these actions is graphically represented in
figure 4.2

15

4.5 Requirements

Marquardt and Uhrmacher produced ten requirements in their paper on using
PDDL for creating a planning domain [7]. Taking those into account together
with experience gained when modeling the domain, we can produce our own list
of requirements for using HPDL when creating a planning domain.

Actions should be kept modular. By keeping the actions modular,
two things can be achieved. First, the action sequence will be clearer.

Human actions should not be part of the effect of an action.
There are times when a goal can only be completed with human inter-
vention. In our scenario we would need human action to move a device if
it is not in the correct room. However, by allowing human actions to be
part of the effect, the action sequence will become more like a suggestion
for actions to take to complete the goal. Thus defeating the purpose of
the planning algorithm of planning the execution of services. Most human
actions can, or will be able to in the future, be substituted by robots. In
such a scenario human action can be modeled as a service provided by the
robot, but that is left out of our scope.

The objective must be formed only from actions and tasks con-
tained in the domain description. As opposed to PDDL where the
objective is formed from propositions.

Along with syntactical mapping from HPDL to a common ser-
vice description language, the plan should be enough to be ex-
ecutable. This infers that no further knowledge is needed once the plan
is generated.

Objects cannot be created. Creation of objects would violate the static
state planning of Al planning.

Axioms can and should be used when possible. During the creation
of the scenario for this paper, axioms were not needed. However when
there are two predicates and the value of one can be derived from the
value of other, axioms are favorable when considering efficiency. If we
added hasBeamer ?7r - Room, its value could be derived from (in ?7d -
Device ?r - Room) for example.

Locking resources should be considered. While not considered dur-
ing the creation of the domain in this paper, it is possible in HPDL and
is necessary for some situations. The paper from Plociennik et al. delves
deeper into some locking paradigms [9].

Objects should not be cast. Static state space disallows objects of
changing types. Strictly theoretically speaking though, in HPDL and the
SH planner, the type is seen as just another predicate in the state that
can be removed and and a new one added. Practically it has no use, since
most objects cannot morph.

16

e Type hierarchy should be used to its full capability. While not
implemented at the time of this paper, there is a workaround provided in
section 4.3. Type hierarchy is beneficial to the efficiency of the domain.

e Caution should be taken when introducing recursion into the
domain. Recursion may solve some problems, but can cause others at
the same time. Proper locking techniques decrease the danger that ac-
companies recursion.

e Numbers should be initialized along with objects. The domain
will search for initialization of number types when they are included as
parameters. If not all are known at initialization, a range of numbers
should be included.

17

Chapter 5

Performance

The scenario was an example of a domain description that the planner used.
However, the performance of the planner depends on how the domain was mod-
eled. To test the domain a test plan was made that should be enough to give
an indication of how efficient the domain is. The domain is not exceptionally
big and the SH planner should have no problem extracting an action sequence
in mere milliseconds. Next the testing process is elaborated upon.

Setup

With the given domain there were two variables to test. The first one was
the number of predicates in the initial state and the second one the number
of actions it needs to execute. Both of these variables are part of the problem
description.

To test the number of predicates the goal task was kept the same and just whole
rooms were added, like room202 and room212. Each room added approximately
50 predicates to the initial state. The number of rooms was varied, going from
1, to 3, to 5, to 7 and to 10.

Testing the number of actions becomes trickier since some action take longer to
get to. The best way to achieve reliable results was to have 10 rooms in exactly
the same condition and repeat a task on a varying number of rooms.

Result

The result was plotted in a single graph as shown in figure 5.1. The graphs
shows a somewhat linear increase in time. In terms of scalability it bodes well
especially considering it could be exponential growth. For a building consisting
of hundreds of rooms and a few goal tasks, the planner would still only need
seconds and that is acceptable time. When measuring time for smart offices one
should keep in mind that a normal office would have the user doing everything
and can take minutes even.

18

Figure 5.1: Result of performance measurements

19

Chapter 6

Conclusion

The purpose of this thesis was to model a planning domain for smart offices.
For illustration purposes the scenario of getting a room ready for demonstra-
tion purposes was modeled. The steps followed were to first model the data and
then the scenario itself. A problem description was developed to show how the
domain could be used to solve a problem. A list of requirements came out of the
modeling of the actions along with requirements previously mentioned in other
related work [9, 7). Most of these requirements highlight features supported
by HPDL such as type hierarchy and axioms. Some requirements stem for the
static state space used, while others come from HPDL or the combination with
the SH planner. Furthermore the performance of the planner with the created
domain was measured in order to test the efficiency of the domain. Results show
that the performance is good enough and it is still a matter of milliseconds for
increasing predicates in the initial state and goal tasks. The scalability deduced
from the results is linear.

There is also something to be said about using HPDL instead of PDDL. At
first glance there does not seem to much difference, but the scenario in this
paper was never recreated using PDDL so one could not know exactly what
the differences are. It is clear that since HPDL and the SH planner were both
developed by the same person and used in the EnSO project it will be easier to
adapt them to each other.

Future work

The purpose of this paper and the underlying project was to get an insight into
the creation of a domain in HPDL and was not meant as project that should be
built on since in a later stage the domain would not be hypothetical anymore.
There are side projects that can be recommended as future work. The main
issue was checking the syntax and semantics once the domain was finished. The
advantages that programmers have when using popular programming languages
and compilers are that there are good editors and error indications. The same
can be applied to HPDL and the SH planner. A good interactive editor for
HPDL can spot syntax errors from early on. Better error indication by the
planner would make it easier to solve semantic errors later on.

20

As for HPDL specific issues, support for type hierarchy should be a must. In the
partial domain created for this paper it was more about using the functionalities
already embedded in HPDL instead of figuring out new functionalities that can
be added. Because of this there are not many suggestions for the language.

21

Chapter 7

References

[1]
2]

[10]

Website for the enso project, 2011.

Jan Borchers, Meredith Ringel, Joshua Tyler, and Armando Fox. Stan-
ford interactive workspaces: a framework for physical and graphical user
interface prototyping. Wireless Communications, IEEE, 9(6):64-69, 2002.

Ilche Georgievski. Hierarchical planning definition language. Technical
report, University of Groningen, JBI 2013-12-3, 2013.

Ilche Georgievski and Marco Aiello. An overview of hierarchical task net-
work planning. Technical report, CUniversity of Groningen, JBI 2012-12-5,
2012.

Thomas Heider and Thomas Kirste. Intelligent environment lab. Computer
Graphics Topics, 15(2):8-10, 2002.

Christophe Le Gal. Smart offices. In Smart Environments: Technologies,
Protocols, and Applications. John Wiley & Sons, Inc., 2005.

Florian Marquardt and Adelinde Uhrmacher. Creating ai planning domains
for smart environments using pddl. In Intelligent Interactive Assistance and
Mobile Multimedia Computing, pages 263-274. Springer, 2009.

Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - The
Planning Domain Definition Language. Technical report, CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control,
1998.

Christiane Plociennik, Christoph Burghardt, Florian Marquardt, Thomas
Kirste, and Adelinde Uhrmacher. Modelling device actions in smart en-
vironments. In Intelligent Interactive Assistance and Mobile Multimedia
Computing, pages 213-224. Springer, 2009.

Carlos Ramos, Goreti Marreiros, Ricardo Santos, and Carlos Filipe Fre-
itas. Smart offices and intelligent decision rooms. In Handbook of Ambient
Intelligence and Smart Environments, pages 851-880. Springer, 2010.

22

[11] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The
active badge location system. ACM Trans. Inf. Syst., 10(1):91-102, January
1992.

23

Appendix A

Grammar HPDL

A.1 Domain Description

<domain> ::= (define (domain <name>)
<require —def>’
<types—def>7typing
<predicates —def>’
<structure—def>*)

<require—def> ;= (:requirements <require-—key>")
<require —key> ::= See Section 3
<types—def> = (:types <typed list (<name>)>)

<typed list (x)>:u= x*
<typed list (x)>u="%Wrng x * — <type> <typed list (x)>
<type> 1= <name>

<type> ::= object

<predicates—def >::= (:predicates <atomic formula skeleton
>T)

<atomic formula skeleton >::= (<predicate> <typed list (<
variable >)>)

<predicate> (1= <name>

<variable> = 7<name>

<structure—def> ::= <action—def>

<structure—def> ::= <task—def>

<structure —def> ::=:derived—predicates ~qerived —def>

<emptyOr (x)> = ()

<emptyOr (x)> = X

<action—def>

(:action <name>
:parameters (<typed list (<
variable >)>)
<action—def body>)

<action—def body>::= :precondition <emptyOr (<pre>)>
reffect <emptyOr (<effect >)>

<pre> ::= <atomic formula (<term>)>

<pre> ;1= megative—preconditions]jteral (<term>)>

<pre> ::= (and <pre>*)

24

<pre> c= :disjunctive—preconditions (or <pre>*)
<pre> g :disjunctive—preconditions (not <pre >)
<pre> g :disjunctive—preconditions (imply <pre> <pre >)
<pre> ;; = wuniversal—preconditions (forall (<typed list

(<variable >)>) <pre>)
<pre> . numeric— fluents <ffcomp>
<atomic formula (t)>:= (<predicate> t*)

~—

<literal (t)> = <atomic formula (t)>

<literal (t)> ::=(not <atomic formula (t)>)

<term> ::= <name>

<term> ::= <variable>

<term> ::= <number>

<f—comp> ::= (<binary—comp> <f—exp> <f—exp>)

<binary—comp> = >

<binary—comp> = <

<binary—comp> = =

<binary—comp> = <=

<binary—comp> = >=

<ffexp> _ :numeric— fluents <number>

<f—exp> sr=numeric—fluents (hinary —op> <f—exp> <f—
exp>)

<f—exp> :1=mumeric—fluents (—mylti—op> <f—exp> <f—exp
>+)

<f—exp> ::::numeric—fluents (_ <f—exp>)

<ffexp> _ :numeric— fluents <f—head>

<multi—op>

<binary—op>
<binary—op>

<binary —op> =/

<multi—op> =k

<multi—op> = 4

<f—head> i:= (<function—symbol> <term>L)

<f—head> ::= <function—symbol>

<function—symbol >::= <name>

<effect > = (and <c—effect>L)

<effect > 1= <c—effect>

<c—effect > i1 = conditional—effects (fora]]l (<typed list (<
variable >)>) <effect >)

<c—effect > i= <p—effect>

<p—effect > ::= (not <atomic formula (<term>)>)

<p—effect > i:= <atomic formula (<term>)>

<p—effect > s = mumeric—fluents (- a55ign —op> <f—head> <f—
exp>)

<assign—op> 1= assign

<assign—op> = scale—up

<assign—op> = scale—down

<assign—op> = increase

<assign—op> = decrease

<task—def> i:= (:task <name>

25

:parameters (<typed list (<
variable >)>)
<task—def body>)
<task—def body> ::= <method>T
<method> ::= (:method <name>
:precondition <emptyOr (<pre>)
stasks <task—list >)

<task—list > ::= (<ordering> <task—atom>)

<ordering> = sequence

<ordering> = unordered

<task—atom> ::= (<name> <term>")

<derived —def> i:= (:derived <atomic formula skeleton> <
pre>)

<name> ::= <letter> <any char>*

<letter > = a..z | A..Z

<any char> = <letter>

<any char> = <digit>
<any char> = =
<any char> =

<number> = <digit >t <decimal>’
<digit> = 0..9
<decimal> = .<digit>T

A.2 Domain Description

<problem> ::= (define (problem <name>)
(: domain <name>)
<require —def>’
<object —declaration >?<init >
<goal—tasks >)

<require—def> ::= (:requirements <require-—key>")
<require —key> ::= See Section 3

<object—declaration >::= (:objects <typed list (<name>)>)
<init> = (:rinit <init—el>*)

<init —el> = <literal (<name>)>
<atomic formula (t)>:= (<predicate> t*)
<literal (t)> = <atomic formula (t)>
<predicate> = <name>

<goal—tasks> ii= (:goal—tasks <task—list >)
<task—list > ::= (<ordering> <task—atom>")
<ordering> 1= sequence

<ordering> ::= unordered

<task—atom> ;:= (<name> <term>*)

<name> := <letter > <any char>*
<letter > =a..z | A..Z

<any char> = <letter>

<any char> = <digit>

<any char>
<any char> =

26

<number> = <digit >t <decimal>’
<digit> = 0..9

A.3 Requirements

A table of currently supported requirements by the SH planner. If a domain
specifies no requirements, it is assumed a requirement :strips.

:strips Basic STRIPS—style adds
and deletes

:typing Allow types in
declarations of wvariables

:negative—preconditions Allow not in precondition
descriptions

:disjunctive —preconditions Allow or in precondition
descriptions

:universal —preconditions Allow forall in
precondition descriptions

:numeric—fluents Allow use of effects
using assignment operators and arithmetic
preconditions

:conditional —effects Allow use of effects with
forall operator

:derived—predicates Allows predicates whose

truth value is defined by a formula

27

Appendix B

Domain: enso

(define (domain enso)

(:requirements

:strips :typing :negative—preconditions

numeric—fluents)

(:types

)

(:predicates

)

Room

DemonstrationRoom — Room

Appliance

Device — Appliance

Light Computer Monitor Printer Beamer —

Device
Blind ProjectionScreen — Appliance
Coordinate Percentage Luxvalue— number
Clarity
PrinterStatus

(location 7o — Object ?x 7y — Coordinate)

(intensity 7?1 — Light ?p — Percentage)

(dimmable ?1 — Light)

(turned—on ?d — Device)

(pulled—up ?a — Appliance)

(targeting ?b — Beamer ?7s —
ProjectionScreen)

(in ?a — Appliance ?r — Room)

(on ?r — Room ?f — Floor)

(clarity ?c¢ — Clarity)

(light —in—room ?r — Room 7c¢ — Luxvalue)

(connected 7al 7a2 — Object)

(input ?c — Computer ?d — Device)

(output ?c — Computer ?d — Device)

(printer—status ?p — Printer 7s —
PrinterStatus)

(:action adjust—light
:parameters (?1 — Light ?p — Percentage)

28

raction

raction

action

action

action

raction

raction

:precondition (and (intensity 71 ?x) (I= 7p ?x) (

dimmable ?71))

effect

(and (not (intensity 7?1 ?x)) (intensity ?

1 7p))

turn—on—light

:parameters (7?1 — Light)
:precondition (and (not (turned—on ?1))(not (

dimmable ?71)))

ceffect

(turned—on ?71)

turn—off—light

1))

ceffect

:parameters (7?1 — Light)
:precondition (and (turned—on ?1)(not (dimmable ?

(not (turned—on 71))

turn—on—computer

:parameters (?c — Computer)
:precondition (not(turned—on ?c))
:effect (turned—on ?c¢)

turn—off —computer

:parameters (?c — Computer)
:precondition (turned—on ?c)
reffect

(not (turned—on 7c))

turn—on—monitor

:parameters (?m — Monitor)
:precondition (not(turned—on ?m))
reffect

(turned—on ?m)

turn—off —monitor

:parameters (?m — Monitor)
:precondition (turned—on 7m)
ceffect

(not (turned—on 7m))

turn—on—beamer

:parameters (?b — Beamer)
:precondition (not(turned—on ?b))
reffect

(turned—on ?b)

29

raction turn—off—beamer

:parameters (7b — Beamer)
:precondition (turned—on ?b)
ceffect (not(turned—on ?b))

action turn—on—printer

:parameters (?p — Printer)

:precondition (not (turned—on ?p))

ceffect (and (turned—on ?p) (printer—status ?p
ready))

action turn—off—printer

:parameters (?p — Printer)

:precondition (and (turned—on ?p) (not(printer—
status ?p printing)))

:effect (turned—on ?p)

:action pull—down—blind

:parameters (7bl — Blind)
:precondition (pulled—up ?bl)
:effect (not (pulled—up ?bl))

:action pull—up—blind

:parameters (7bl — Blind)
:precondition (not (pulled—up ?bl))
ceffect (pulled—up ?bl)

:action pull—-down—projection—screen
:parameters (7s — ProjectionScreen)
:precondition (pulled—up ?s)
ceffect (not(pulled—up ?s))

:action pull—up—projection—screen
:parameters (?7s — ProjectionScreen)
:precondition (not (pulled—up ?s))
ceffect (pulled—up ?s)

:action set—output—to—beamer

:parameters (?7c¢ — Computer ?b — Beamer)

:precondition (and (turned—on ?c¢) (turned—on ?b)
(connected ?b 7c))

ceffect (output ?c 7b)

30

:task turn—on—computer—system
:parameters (?7c¢ — Computer)
:method monitor—on
:precondition (and (not(turned—on ?c)) (Monitor ?
m) (connected ?m 7c)(turned—on ?m))
:tasks (sequence (turn—on—computer ?c))

:method monitor—off
:precondition (and (not(turned—on ?c¢))(Monitor ?
m) (connected ?m ?c) (not(turned—on 7m)))
:tasks (sequence (turn—on—computer ?c¢) (turn—on—
monitor ?m))

:task dim—lights
:parameters (?xmin ?ymin ?xmax 7ymax — Coordinate

:method there—is—dimmable—light
:precondition (and (Light ?1)(location 7?1 ?xl 7yl
) (> ?x1 ?xmin) (> ?yl ?ymin)
(< ?7x1 ?xmax) (< 7yl ?ymax) (dimmable ?1)
(not (intensity 7?1 60)))
:tasks (sequence (adjust—light ?1 60) (dim—lights
?xmin ?ymin ?xmax ?ymax))

:method there—is—mnot—dimmable—light
:precondition (and (Light ?1) (location ?1 ?x1 ?
yl) (> ?x1 ?xmin) (> ?yl ?ymin)
(< ?x1 ?xmax) (< 7yl ?ymax) (not (
dimmable ?1)) (turned—on ?1))
:tasks (sequence (turn—off—light ?1) (dim—lights
?xmin ?ymin ?xmax ?ymax))

:method no—more—lights
:precondition ()
stasks ()

:task pull—down—blinds
:parameters (?7r — Room)
:method there—is—blind
:precondition (and (Blind ?b) (in ?b ?r) (pulled—
up ?b))
:tasks (sequence (pull—down—blind ?b) (pull—down—
blinds ?7r))

:method no—more—blinds

31

:precondition ()
:tasks ()

(:task pull—up—blinds

(: method

(: method

:parameters (?r — Room)

there—is—pulled —down—blind

:precondition (and (Blind ?b) (in ?b ?r) (mnot (
pulled—up ?b)))

:tasks (sequence (pull—up—blind ?b) (pull—up—
blinds ?7r))

no—more—blinds
:precondition ()
:tasks ()

(:task dim—projection—area

(: method

(: method

:parameters (?r — DemonstrationRoom ?b — Beamer)

with—blinds —up

:precondition (and (location ?b ?xb ?yb) (assign
?xmin (— ?xb 4)) (assign ?ymin (— ?yb 4))

(assign ?xmax (+ ?xb 4)) (assign ?ymax (+
2yb 1))

:tasks (sequence (pull—-down—blinds ?r) (dim—

lights ?xmin ?ymin ?xmax 7ymax))

with—blinds—down
:precondition (and (location ?b ?xb ?yb) (assign
?xmin (— ?xb 4)) (assign ?ymin (— ?yb 4))
(assign ?xmax (+ ?xb 4)) (assign ?ymax (+
7yb 4)))
:tasks (sequence (dim—lights ?xmin ?ymin xmax
ymax))

(:task turn—on—lights

(:method

(: method

:parameters (?r — Room)

there—is —dimmable—light

:precondition (and (Light ?1)(in ?1 ?r) (dimmable
?1) (not (intensity 7?1 100)))

:tasks (sequence (adjust—light ?1 100) (turn—on—
lights ?r))

there—is —not—dimmable—light

:precondition (and (Light ?1) (in ?1 ?r) (not (

dimmable ?1)) (not(turned—on ?1)))

32

:tasks (sequence (turn—on—light ?1) (turn—on-—
lights ?r))
)
(:method no—more—lights
:precondition ()
stasks ()

)
)

(:task light —room
:parameters (?7r — Room)
(:method light—naturally
:precondition (and (light—in—room ?r ?x) (< ?x
320) (or (clarity sunny) (clarity mostly—sunny
)))
:tasks (sequence (pull—up—blinds ?r))
)
(:method light—artificially
:precondition (and (light—in—-room ?r ?x) (< 7x
320))
:tasks (sequence (turn—on—lights ?r))
)
)

(:task setup—beamer
:parameters (?b — Beamer ?c — Computer)
(:method set—everything
:precondition (and (not(turned—on ?¢)) (mot (
turned—on ?b)) (ProjectionScreen ?s) (
targeting ?b 7s)
(pulled—up 7?s))
:tasks (sequence (turn—on—computer ?c¢) (pull—down
—projection—screen ?s) (turn—on—beamer ?b) (
set —output—to—beamer ?c ?b))
)
(:method set—everything—but—computer
:precondition (and (turned—on 7c¢) (not (turned—on
?b)) (ProjectionScreen 7s) (targeting ?b ?s)
(pulled—up 7?s))
:tasks (sequence (pull—down—projection—screen ?7s)
(turn—on—beamer ?b) (set—output—to—beamer ?c
7b))
)
(:method set—everything—but—screen
:precondition (and (not(turned—on ?c)) (not (
turned—on ?b)) (ProjectionScreen ?s) (
targeting ?b 7s)
(not (pulled—up 7s)))
:tasks (sequence (turn—on—computer ?c¢) (turn—on—
beamer ?b) (set—output—to—beamer 7c ?b))

33

:method

:method

:method

:method

:method

set—everything —but—beamer

:precondition (and (not(turned—on ?c¢)) (turned—on

?b) (ProjectionScreen ?s) (targeting ?b ?s)
(pulled—up 7?s))

:tasks (sequence (turn—on—computer ?c¢) (pull—down

—projection—screen 7s) (set—output—to—beamer ?
¢ ?b))

set —only —computer

:precondition (and (not(turned—on ?c¢)) (turned—on

?b) (ProjectionScreen 7s) (targeting ?b 7s)
(not (pulled—up 7s)))

:tasks (sequence (turn—on—computer ?c¢) (set—

output—to—beamer 7c ?b))

set—only—screen

:precondition (and (turned—on 7c¢) (turned—on ?b)

(ProjectionScreen 7s) (targeting ?b 7s)
(pulled—up 7?s))

:tasks (sequence (pull—-down—projection—screen ?s)

(set—output—to—beamer ?c¢ 7b))

set —only —beamer

:precondition (and (turned—on ?c¢) (not (turned—on

?b)) (ProjectionScreen 7s) (targeting ?b ?s)
(not (pulled—up 7s)))

:tasks (sequence (turn—on—beamer ?b) (set—output—

to—beamer ?c¢ ?b))

only—set—output

:precondition (and (turned—on ?) (turned—on ?b) (

ProjectionScreen ?s) (targeting b 7s)
(not (pulled—up 7s)))

:tasks (sequence (set—output—to—beamer ?c ?b))

:task dim—room

:method

:method

parameters (?r — DemonstrationRoom)

from—light

precondition (and (light—in—room ?r ?x) (> 7x
320) (Beamer 7b) (in ?b 7r))

tasks (sequence (dim—projection—area 7r 7b))

from—darkness

precondition (and (light—in—-room ?r 7x) (< 7x
320) (Beamer 7b) (in ?b 7r))

tasks (sequence (light—-room ?r) (dim—projection—
area 7r ?b))

34

)
)

(:task turn—to—demonstration
:parameters (?r — DemonstrationRoom ?c¢ — Computer)
(:method turn—to—demonstration—only—case
:precondition (and (in ?c¢ ?r) (Beamer 7b) (
connected ?b 7c¢))
:tasks (sequence (dim—room ?r) (setup—beamer ?b 7

c))

35

Appendix C

Problem descriptions

(define (problem ensol) (:domain enso)
(:requirements :strips)

(:init

(Percentage 0)
(Percentage 60)
(Percentage 80)
(Percentage 100)
(Coordinate 100)
(Coordinate 101)
(Coordinate 102)
(Coordinate 103)
(Coordinate 104)
(Coordinate 105)
(Coordinate 106)
(Coordinate 107)
(Coordinate 108)
(Coordinate 109)
(Coordinate 110)
(Coordinate 112)
(Coordinate 112)

(Room room222)
(DemonstrationRoom room222)
(location room222 100 100)
(Computer computer1_222)
(location computerl 102 101)
(in computerl_ 222 room222)
(Light light1_222)

(location light1.222 102 102)
(in light1.222 room222)
(dimmable light1.222)
(intensity lightl.222 100)
(Light light2.222)

(location light2_222 106 102)
(in light2_222 room222)

36

(turned—on light2.222)

(Light light3_222)

(location light3.222 102 110)

(in light3.222 room222)

(dimmable light3_222)

(intensity light3_-222 0)

(Light light4.222)

(location light4_222 106 110)

(in light4_222 room222)

(Monitor monitorl_222)

(location monitor1-222 101 101)

(in monitorl_222 room?222)

(connected monitorl_222 computerl_222)

(Beamer beamerl_222)

(location beamerl1_.222 104 108)

(in beamerl_222 room?222)

(connected beamerl_222 computerl_222)

(ProjectionScreen projection—screenl_222)

(location projection—screenl_222 104 112)

(in projection—screenl_222 room222)

(pulled—up projection—screenl_222)

(targeting beamerl_222 projection—screenl_222)

(Blind blind1.222)

(location blind1-222 100 103)

(in blind1-222 room222)

(pulled—up blind1.222)

(Blind blind2.222)

(location blind2.222 100 106)

(in blind2_222 room222)

(pulled—up blind2_222)

(Blind blind3.222)

(location blind3.222 100 109)

(in blind3-222 room222)

(pulled—up blind3_.222)

(clarity mostly—sunny)

(light —in—room room222 400)

)

(:goal—tasks (sequence (turn—to—demonstration room222
computerl.222)))

)

37

